Mingzhi Xu, Mingjiao Pang, Chunli Wang, Na An, Ruman Chen, Yafei Bai, Jiqing He, Chunli Wang, Yonghui Qi
{"title":"MiR-92a-3p Knockdown Attenuates Transforming Growth Factor-β1-induced Tubulointerstitial Fibrosis by Targeting LIN28A-mediated EMT Pathway.","authors":"Mingzhi Xu, Mingjiao Pang, Chunli Wang, Na An, Ruman Chen, Yafei Bai, Jiqing He, Chunli Wang, Yonghui Qi","doi":"10.4103/ejpi.EJPI-D-24-00019","DOIUrl":"10.4103/ejpi.EJPI-D-24-00019","url":null,"abstract":"<p><strong>Abstract: </strong>The role of microRNAs in regulating tubulointerstitial fibrosis, a key feature of progressive chronic kidney disease, is of significant importance. LIN28A has been reported to attenuate renal fibrosis in obstructive nephropathy. Here, our objective was to investigate the precise biological function of the miR-92a-3p/LIN28A axis in tubulointerstitial fibrosis. The human renal proximal tubular epithelial (HK-2) cell line was exposed to transforming growth factor (TGF)-β1, establishing an in vitro model mimicking tubulointerstitial fibrosis. Luciferase reporter assay was utilized to investigate the relationship between miR-92a-3p and LIN28A. Cell transfection techniques were employed to modify the expression of miR-92a-3p and LIN28A. An in vivo model of tubulointerstitial fibrosis was created by inducing unilateral ureteral obstruction (UUO) in C57BL/6N mice. Our initial observations showed that TGF-β1 treatment of HK-2 cells and the UUO mice model led to an increase in miR-92a-3p expression and a decrease in LIN28A expression. We confirmed that miR-92a-3p directly targeted LIN28A in HK-2 cells. In TGF-β1-stimulated HK-2 cells, knocking down miR-92a-3p notably reduced the levels of alpha smooth muscle actin and vimentin and concurrently enhanced the expression of E-cadherin. These changes were counteracted upon transfection with si-LIN28A. Thus, directing interventions toward miR-92a-3p holds the potential to emerge as a viable therapeutic approach for addressing tubulointerstitial fibrosis.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"198-206"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Allicin Mitigates Diabetic Retinopathy in Rats by Activating Phosphatase and Tensin Homolog-induced Kinase 1/Parkin-mitophagy and Inhibiting Oxidative Stress-mediated NOD-like Receptor Family Pyrin Domain Containing 3 Inflammasome.","authors":"Yuanyuan Xu, Jia Yu","doi":"10.4103/ejpi.EJPI-D-24-00039","DOIUrl":"10.4103/ejpi.EJPI-D-24-00039","url":null,"abstract":"<p><strong>Abstract: </strong>Diabetic retinopathy (DR) is one of the significant disabling outcomes of diabetes mellitus characterized by retinal microvascular damage, inflammation, and neuronal dysfunction. Allicin (Alc), a natural compound found in garlic, has garnered attention for its antioxidant and anti-inflammatory properties, positioning it as a potential therapeutic agent for DR. The aim of the present study was to investigate the therapeutic efficacy of Alc in DR management and elucidate its underlying mechanisms of action. We established a DR model in male Sprague-Dawley rats (n = 50, 200-250 g, 12 weeks old) using a high-fat diet for 8 weeks plus a low dose of streptozotocin administered at the start of the 4th week. The diabetic (Diab) animals were administered Alc (16 mg/kg/day, orally), either alone or in combination with mitochondrial division inhibitor-1 (Mdivi-1) as a mitophagy inhibitor, starting 28 days before tissue sampling. We evaluated histopathological changes, metabolic abnormalities associated with type 2 diabetes mellitus (T2DM), the expression of proteins regulating pyroptosis (NOD-like receptor family pyrin domain containing 3, cleaved-caspase 1, and gasdermin D-N terminal) and mitophagy (phosphatase and tensin homolog-induced kinase 1 [PINK1] and Parkin), as well as the levels of oxidative stress mediators and proinflammatory cytokines. Alc treatment effectively ameliorated histopathological changes and metabolic abnormalities associated with T2DM. It downregulated pyroptosis-related proteins, upregulated mitophagy-related proteins, reduced proinflammatory cytokine levels, and attenuated oxidative stress. Treatment with Mdivi-1 suppressed the beneficial effects of Alc. Our findings highlight the therapeutic potential of Alc in managing DR by targeting multiple pathophysiological pathways, including pyroptosis, inflammation, and oxidative stress. The observed antipyroptotic effects of Alc were partially mediated by the activation of the PINK1/parkin-mediated mitophagy pathway. Additional studies are necessary to thoroughly understand the therapeutic mechanisms of Alc and its viability as a treatment choice for DR.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":"67 4","pages":"215-224"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142116789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Impact of Highly Selective Thoracic Sympathectomy on the Progression of Monocrotaline-induced Pulmonary Arterial Hypertension in Rats.","authors":"Wuqianhui Liu, Chen Men, Zibo Liu, Qifeng Li, Kun Liu, Huan Liu, Linfei Zhang, Xiangxiang Zheng","doi":"10.4103/ejpi.EJPI-D-24-00034","DOIUrl":"10.4103/ejpi.EJPI-D-24-00034","url":null,"abstract":"<p><strong>Abstract: </strong>Pulmonary arterial hypertension (PAH) is characterized by persistently elevated pulmonary artery pressure and vascular resistance. Sympathetic overactivity in hypertension participates in pulmonary vascular remodeling and heart failure. The present study aims to explore the efficacy of highly selective thoracic sympathectomy (HSTS) on lowering pulmonary artery pressure, reversing pulmonary vascular remodeling, and improving right ventricular function in rats. A total of 24 Sprague-Dawley rats were randomly assigned into the control group ( n = 8) and experimental group ( n = 16). Rats in the control group were intraperitoneally injected with 0.9% normal saline, and those in the experimental group were similarly administered with received monocrotaline (MCT) injections at 60 mg/kg. Two weeks later, rats in the experimental group were further subdivided randomly into the MCT-HSTS group ( n = 8) and MCT-sham group ( n = 8), and they were surgically treated with HSTS and sham operation, respectively. Two weeks later, significantly lowered mean pulmonary artery pressure (mPAP), pulmonary artery systolic pressure (sPAP), and the ratio of sPAP to femoral artery systolic pressure (sFAP) were detected in the MCT-HSTS group than those of the MCT-sham group. In addition, rats in the MCT-HSTS group presented a significantly lower ratio of vascular wall area to the total vascular area (WT%), right ventricular hypertrophy index, and degrees of right ventricular fibrosis and lung fibrosis in comparison to those of the MCT-sham group. HSTS significantly downregulated protein levels of inflammasomes in pulmonary artery smooth muscle cells (PASMCs). Collectively, HSTS effectively reduces pulmonary artery pressure, pulmonary arteriolar media hypertrophy, and right ventricular hypertrophy in MCT-induced PAH rats. It also exerts an anti-inflammatory effect on PASMCs in PAH rats by suppressing inflammasomes and the subsequent release of inflammatory cytokines.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"207-214"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interference with Histone Deacetylase 4 Regulates c-Jun N-terminal Kinase/Activating Protein-1 Signaling to Ameliorate Sepsis-induced Alveolar Epithelial Cell Injury.","authors":"Qunyan Chen, Jiachang Lao","doi":"10.4103/ejpi.EJPI-D-24-00021","DOIUrl":"10.4103/ejpi.EJPI-D-24-00021","url":null,"abstract":"<p><strong>Abstract: </strong>Sepsis is a syndrome of systemic inflammatory response resulting from infection, which can lead to severe lung injury. Histone deacetylase 4 (HDAC4) is a key protein known to regulate a wide range of cellular processes. This study was designed to investigate the role of HDAC4 in lipopolysaccharide (LPS)-induced alveolar epithelial cell injury as well as to disclose its potential molecular mechanisms. The alveolar epithelial cell injury model was established by inducing A549 cells with LPS. A549 cell viability was detected by cell counting kit-8 assay and the transfection efficiency of small interfering RNA targeting HDAC4 was appraised utilizing Western blot. The levels of inflammatory cytokines and oxidative stress markers were detected using corresponding assay kits. Dichloro-dihydro-fluorescein diacetate assay was used for the measurement of reactive oxygen species (ROS) content. Flow cytometry, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide-1 staining, adenosine triphosphate (ATP) assay kits, and MitoSOX Red assay kits were employed to estimate cell apoptosis, mitochondrial membrane potential, ATP level, and mitochondrial ROS level, respectively. The oxygen consumption rate of A549 cells was evaluated with XF96 extracellular flux analyzer. Western blot was applied for the evaluation of HDAC4, apoptosis- and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1) signaling pathway-related proteins. HDAC4 expression was found to be increased in LPS-induced A549 cells and HDAC4 silence inhibited inflammatory damage, repressed oxidative stress, alleviated cell apoptosis, improved mitochondrial function, and blocked JNK/AP-1 signaling in A549 cells stimulated by LPS, which were all reversed by JNK activator anisomycin. Collectively, the interference with HDAC4 could ameliorate LPS-induced alveolar epithelial cell injury, and such protective effect may be potentially mediated through the JNK/AP-1 signaling pathway.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"174-186"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141918552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mariadoss Arokia Vijaya Anand, Kumar Shivamadhaiah Manjula, Chau-Zen Wang
{"title":"Functional Role of DDR1 in Oligodendrocyte Signaling Mechanism in Association with Myelination and Remyelination Process in the Central Nerve System.","authors":"Mariadoss Arokia Vijaya Anand, Kumar Shivamadhaiah Manjula, Chau-Zen Wang","doi":"10.4103/ejpi.EJPI-D-24-00043","DOIUrl":"10.4103/ejpi.EJPI-D-24-00043","url":null,"abstract":"<p><strong>Abstract: </strong>Multiple sclerosis (MS) is a complicated, inflammatory disease that causes demyelination of the central nervous system (CNS), resulting in a variety of neurological abnormalities. Over the past several decades, different animal models have been used to replicate the clinical symptoms and neuropathology of MS. The experimental model of experimental autoimmune/allergic encephalomyelitis (EAE) and viral and toxin-induced model was widely used to investigate the clinical implications of MS. Discoidin domain receptor 1 (DDR1) signaling in oligodendrocytes (OL) brings a new dimension to our understanding of MS pathophysiology. DDR1 is effectively involved in the OL during neurodevelopment and remyelination. It has been linked to many cellular processes, including migration, invasion, proliferation, differentiation, and adhesion. However, the exact functional involvement of DDR1 in developing OL and myelinogenesis in the CNS remains undefined. In this review, we critically evaluate the current literature on DDR1 signaling in OL and its proliferation, migration, differentiation, and myelination mechanism in OL in association with the progression of MS. It increases our knowledge of DDR1 in OL as a novel target molecule for oligodendrocyte-associated diseases in the CNS, including MS.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"161-173"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142038691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Purine-rich Element-binding Protein B Mediates Ferroptosis in Lipopolysaccharide-induced Raw264.7 Macrophage Inflammation.","authors":"Zhaosi Wang, Wei Zhang, Xiangrui Zhu, Jian Mei, Xiaoying Wang, Lixin Zhang, Langlin Ou, Xiaoyu Guan, Xiangming Pang, Yuxiang Liu, Zitong Meng, Cui Ma","doi":"10.4103/ejpi.EJPI-D-24-00008","DOIUrl":"10.4103/ejpi.EJPI-D-24-00008","url":null,"abstract":"<p><strong>Abstract: </strong>Lipopolysaccharide (LPS) plays an important role in Raw264.7 macrophage ferroptosis and inflammation. Purine-rich element-binding protein B (Purb) influences cellular processes by regulating gene expression as a transcription factor. However, the effect and molecular mechanism of Purb in regulating Raw264.7 macrophage ferroptosis is still unknown. In this study, we used malondialdehyde, glutathione (GSH) assays, Fe 2+ fluorescence, reactive oxygen species staining, and western blotting to determine the effect of Purb on LPS-induced Raw264.7 macrophage ferroptosis. Pharmacological inhibitor of ferroptosis was utilized to explore its potential effects for inflammation by reverse transcription-quantitative polymerase chain reaction analysis. Meanwhile, chromatin immunoprecipitation was performed to verify the binding of Purb and the GSH-dependent peroxidase 4 (Gpx4). The results showed that LPS-induced inflammation in Raw264.7 macrophages was inhibited by ferroptosis inhibitor Fer-1 treatment. LPS inhibited the expression of Purb in Raw264.7 macrophages. In addition, Purb overexpression relieved the ferroptosis, and inflammatory response of Raw264.7 macrophages induced by LPS. Mechanistically, the binding of Purb to the Gpx4 promoter was decreased after LPS stimulation. Therefore, we concluded for the first time that Purb played a critical role in LPS-induced ferroptosis and inflammatory response by regulating the transcription of Gpx4. These results provide a theoretical basis for further research on the macrophage ferroptosis and inflammation.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"187-197"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Perturbations of Telmisartan Alone and in Combination with Ranolazineor Dapagliflozin on the Amplitude and Gating of Voltage-gated Na + Current in Neuroblastoma Neuronal Cells.","authors":"Yi-Jung Chen, Chien-Ching Lee, Edmund Cheung So","doi":"10.4103/ejpi.EJPI-D-24-00018","DOIUrl":"10.4103/ejpi.EJPI-D-24-00018","url":null,"abstract":"<p><p>A recent study investigated the correlation between telmisartan (TEL) exposure and Alzheimer's disease (AD) risk among African Americans (AAs) and European Americans. Their findings indicated that moderate-to-high TEL exposure was linked to a decreased incidence of AD among AAs. These results suggest a potential association between TEL and a reduced risk of AD specifically within the AA population. Here, we investigated the effects of TEL, either alone or in combination with ranolazine (Ran) or dapagliflozin (Dapa), on voltage-gated Na + currents ( INa ) in Neuro-2a cells. TEL, primarily used for treating hypertension and cardiovascular disorders, showed a stimulatory effect on INa , while Ran and Dapa reversed this stimulation. In Neuro-2a cells, we demonstrated that with exposure to TEL, the transient ( INa(T) ) and late ( INa(L) ) components of INa were differentially stimulated with effective EC 50 's of 16.9 and 3.1 μM, respectively. The research implies that TEL's impact on INa might be associated with enhanced neuronal excitability. This study highlights the complex interplay between TEL, Ran, and Dapa on INa and their potential implications for AD, emphasizing the need for further investigation to understand the mechanisms involved.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"103-106"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Protective Effect of Curcumin on the Tight Junction Integrity and Cellular Senescence in Human Retinal Pigment Epithelium of Early Diabetic Retinopathy.","authors":"Yu-Wen Cheng, Ya-Chih Huang, Kai-Fu Chang, Xiao-Fan Huang, Gwo-Tarng Sheu, Nu-Man Tsai","doi":"10.4103/ejpi.EJPI-D-23-00035","DOIUrl":"10.4103/ejpi.EJPI-D-23-00035","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a secondary complication of diabetes that can lead to visual impairment and blindness. The retinal pigment epithelium (RPE) is a monolayer of pigment cells that forms the blood-retinal barrier (BRB) via tight junction (TJ) proteins and plays a crucial role in the physiological function of the retina. Hyperglycemia induces RPE death and BRB breakdown, which accelerates the process of DR. Curcumin, an active extract of Curcuma longa , has anti-inflammatory, antioxidant, antiapoptotic, and neuroprotective properties. However, the effect of Curcumin on the BRB under high glucose conditions remains unknown. This study aimed to investigate the protective effects of Curcumin on RPE physiology in vitro and in vivo . Curcumin significantly alleviated cell viability inhibition under high glucose conditions. Moreover, high glucose reduced extracellular signal-regulated kinase and Akt pathways activation to diminish RPE cell growth but reversed by Curcumin treatment. Curcumin protected not only TJ integrity but also retinoid regeneration through TJ proteins and isomerase modulation in diabetic retina. Furthermore, Curcumin decreased the expression of angiogenic factor to inhibit retinal neovascularization. Finally, Curcumin treatment markedly reduced apoptosis during hyperglycemia. In conclusion, Curcumin can alleviate the progression of DR by promoting RPE survival, TJ integrity, retinoid isomerase activity, RPE senescence inhibition, and neovascularization. Therefore, Curcumin exhibits high potential for use as a therapeutic agent for early DR.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"107-117"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cinnamaldehyde, A Bioactive Compound from the Leaves of Cinnamomum osmophloeum Kaneh, Ameliorates Dextran Sulfate Sodium-Induced Colitis in Mice by Inhibiting the NLRP3 Inflammasome.","authors":"May-Lan Liu, Wei-Ting Wong, Yih-Ming Weng, Chen-Lung Ho, Hsien-Ta Hsu, Kuo-Feng Hua, Chun-Hsien Wu, Lan-Hui Li","doi":"10.4103/ejpi.EJPI-D-24-00017","DOIUrl":"10.4103/ejpi.EJPI-D-24-00017","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) comprises a group of idiopathic intestinal disorders, including ulcerative colitis and Crohn's disease, significantly impacting the quality of life for affected individuals. The effective management of these conditions remains a persistent challenge. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a complex molecular structure, regulates the production of pro-inflammatory cytokines such as interleukin-1β. Abnormal activation of the NLRP3 inflammasome plays a pivotal role in the development of IBD, making it a compelling target for therapeutic intervention. Our research revealed that cinnamaldehyde (CA), a major bioactive compound found in the leaves of Cinnamomum osmophloeum kaneh, demonstrated a remarkable ability to alleviate colitis induced by dextran sulfate sodium (DSS) in a mouse model. This effect was attributed to CA's ability to downregulate the activation of the NLRP3 inflammasome and reduce the expression of pro-inflammatory mediators in the colon. In the mechanism study, we observed that CA inhibited the NLRP3 inflammasome in macrophages, at least partially, by enhancing the autophagic response, without reducing mitochondrial damage. These findings collectively suggest that CA holds significant potential as a therapeutic agent for enhancing the management of IBD, offering a promising avenue for further research and development.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"139-152"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing Wang, Shaik Althaf Hussain, Narendra Maddu, Haijun Li
{"title":"Protective Effects of Trans-Chalcone on Myocardial Ischemia and Reperfusion Challenge through Targeting Phosphoinositide 3-kinase/Akt-inflammosome Interaction.","authors":"Jing Wang, Shaik Althaf Hussain, Narendra Maddu, Haijun Li","doi":"10.4103/ejpi.EJPI-D-24-00006","DOIUrl":"10.4103/ejpi.EJPI-D-24-00006","url":null,"abstract":"<p><p>Ischemia-reperfusion (IR) injury remains a pivotal contributor to myocardial damage following acute coronary events and revascularization procedures. Phosphoinositide 3-kinase (PI3K), a key mediator of cell survival signaling, plays a central role in regulating inflammatory responses and cell death mechanisms. Trans-chalcone (Tch), a natural compound known for its anti-inflammatory activities, has shown promise in various disease models. The aim of the current study was to investigate the potential protective effects of Tch against myocardial injury induced by ischemia and reperfusion challenges by targeting the PI3K-inflammasome interaction. Experimental models utilizing male rats subjected to an in vivo model of IR injury and myocardial infarction were employed. Administration of Tch (100 μg/kg, intraperitoneally) significantly reduced myocardial injury, as indicated by limited infarct size and decreased levels of the myocardial enzyme troponin. Mechanistically, Tch upregulated PI3K expression, thereby inhibiting the activity of the NOD-like receptor protein 3 inflammasome followed by the activation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Moreover, it mitigated oxidative stress and suppressed vascular-intercellular adhesion molecules, contributing to its cardioprotective effects. The PI3K/Akt pathway inhibitor LY294002 considerably attenuated the beneficial effects of Tch. These findings highlight the therapeutic potential of Tch in ameliorating myocardial injury associated with IR insults through its modulation of the PI3K/Akt-inflammasome axis. The multifaceted mechanisms underlying its protective effects signify Tch as a promising candidate for further exploration in developing targeted therapies aimed at mitigating ischemic heart injury and improving clinical outcomes in cardiovascular diseases characterized by IR injury.</p>","PeriodicalId":519921,"journal":{"name":"Journal of physiological investigation","volume":" ","pages":"129-138"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141433697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}