{"title":"Ecological decoding of visual aesthetic preference with oscillatory electroencephalogram features-A mini-review.","authors":"Marc Welter, Fabien Lotte","doi":"10.3389/fnrgo.2024.1341790","DOIUrl":"10.3389/fnrgo.2024.1341790","url":null,"abstract":"<p><p>In today's digital information age, human exposure to visual artifacts has reached an unprecedented quasi-omnipresence. Some of these cultural artifacts are elevated to the status of artworks which indicates a special appreciation of these objects. For many persons, the perception of such artworks coincides with aesthetic experiences (AE) that can positively affect health and wellbeing. AEs are composed of complex cognitive and affective mental and physiological states. More profound scientific understanding of the neural dynamics behind AEs would allow the development of passive Brain-Computer-Interfaces (BCI) that offer personalized art presentation to improve AE without the necessity of explicit user feedback. However, previous empirical research in visual neuroaesthetics predominantly investigated functional Magnetic Resonance Imaging and Event-Related-Potentials correlates of AE in unnaturalistic laboratory conditions which might not be the best features for practical neuroaesthetic BCIs. Furthermore, AE has, until recently, largely been framed as the experience of beauty or pleasantness. Yet, these concepts do not encompass all types of AE. Thus, the scope of these concepts is too narrow to allow personalized and optimal art experience across individuals and cultures. This narrative mini-review summarizes the state-of-the-art in oscillatory Electroencephalography (EEG) based visual neuroaesthetics and paints a road map toward the development of ecologically valid neuroaesthetic passive BCI systems that could optimize AEs, as well as their beneficial consequences. We detail reported oscillatory EEG correlates of AEs, as well as machine learning approaches to classify AE. We also highlight current limitations in neuroaesthetics and suggest future directions to improve EEG decoding of AE.</p>","PeriodicalId":517413,"journal":{"name":"Frontiers in neuroergonomics","volume":"5 ","pages":"1341790"},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10914990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140051400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subject-specific information enhances spatial accuracy of high-density diffuse optical tomography.","authors":"Sruthi Srinivasan, Deepshikha Acharya, Emilia Butters, Liam Collins-Jones, Flavia Mancini, Gemma Bale","doi":"10.3389/fnrgo.2024.1283290","DOIUrl":"10.3389/fnrgo.2024.1283290","url":null,"abstract":"<p><p>Functional near-infrared spectroscopy (fNIRS) is a widely used imaging method for mapping brain activation based on cerebral hemodynamics. The accurate quantification of cortical activation using fNIRS data is highly dependent on the ability to correctly localize the positions of light sources and photodetectors on the scalp surface. Variations in head size and shape across participants greatly impact the precise locations of these optodes and consequently, the regions of the cortical surface being reached. Such variations can therefore influence the conclusions drawn in NIRS studies that attempt to explore specific cortical regions. In order to preserve the spatial identity of each NIRS channel, subject-specific differences in NIRS array registration must be considered. Using high-density diffuse optical tomography (HD-DOT), we have demonstrated the inter-subject variability of the same HD-DOT array applied to ten participants recorded in the resting state. We have also compared three-dimensional image reconstruction results obtained using subject-specific positioning information to those obtained using generic optode locations. To mitigate the error introduced by using generic information for all participants, photogrammetry was used to identify specific optode locations per-participant. The present work demonstrates the large variation between subjects in terms of which cortical parcels are sampled by equivalent channels in the HD-DOT array. In particular, motor cortex recordings suffered from the largest optode localization errors, with a median localization error of 27.4 mm between generic and subject-specific optodes, leading to large differences in parcel sensitivity. These results illustrate the importance of collecting subject-specific optode locations for all wearable NIRS experiments, in order to perform accurate group-level analysis using cortical parcellation.</p>","PeriodicalId":517413,"journal":{"name":"Frontiers in neuroergonomics","volume":"5 ","pages":"1283290"},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10910052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140041228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}