{"title":"Degradation state analysis of the IGBT module based on apparent junction temperature","authors":"Guoqing Xu, Lingfeng Shao, Xiaoyan Xu, Shen Li","doi":"10.1186/s41601-023-00327-5","DOIUrl":"https://doi.org/10.1186/s41601-023-00327-5","url":null,"abstract":"Abstract The multi-chip parallel insulated gate bipolar transistor (IGBT) is the core device in large-capacity power electronic equipment, but its operational reliability is of considerable concern to industry. The application of IGBT online degradation state analysis technology can be beneficial to the improvement of system reliability. The failure mechanism of IGBT devices is discussed in this paper, and a technique for analyzing the degradation state of IGBT based on apparent junction temperature is proposed. First, the distortion consistency of the voltage rise time in various failures is discussed, and the junction temperature dependence of the voltage rise time is then demonstrated. Subsequently, an apparent junction temperature model based on the voltage rise time is established (the fitting accuracy is as high as 94.3%). From the high-frequency model in the switching process of the device, an online extraction technology of key parameters (e.g., voltage rise time) is developed. Finally, an experimental platform for IGBT degradation state estimation is established, and the feasibility of IGBT degradation state estimation based on apparent junction temperature is proved, especially the degradation of bonding-wire and the gate-oxide-layer. The experimental results show that the proposed IGBT degradation state estimation technique based on apparent junction temperature is a reliable online estimation method with non-contact, high accuracy, and comprehensiveness.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136262446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppression strategy for the inrush current of a solid-state transformer caused by the reclosing process","authors":"Weijie Xie, Fan Xiao, Chunming Tu, Yuting Zheng, Zihao Peng, Qi Guo","doi":"10.1186/s41601-023-00326-6","DOIUrl":"https://doi.org/10.1186/s41601-023-00326-6","url":null,"abstract":"Abstract The automatic reclosing strategy is an effective measure to improve the reliability of a distribution network. It can quickly clear instantaneous faults in the grid. The traditional transformer has proven to be reliable and robust during the reclosing process. However, the influence of the reclosing process on the operational characteristics and reliability of solid-state transformers (SST) is still unclear. The reclosing action may generate a huge inrush current, resulting in shutdown and even damage of the SST. To address this problem, this paper proposes an inrush current suppression strategy. First, the operational performance of the SST under a reclosing process is discussed, and the inrush current generation mechanism is analyzed in detail. Then, considering the controllability of distributed generation (DG), a novel DG-supported inrush current suppression strategy is proposed. The suppression ability of the DG on inrush current in different initial conditions is analyzed. Finally, the effectiveness of the proposed strategy is verified by simulation and experiment. These show that the proposed strategy can help to enhance the FRT capability of the SST, as well as support the SST to maintain continuous power supply and physical integrity during grid faults.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136112352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergey Gorbachev, Jinrui Guo, Ashish Mani, Li Li, Long Li, Chunxia Dou, Dong Yue, Zhijun Zhang
{"title":"MPC-based LFC for interconnected power systems with PVA and ESS under model uncertainty and communication delay","authors":"Sergey Gorbachev, Jinrui Guo, Ashish Mani, Li Li, Long Li, Chunxia Dou, Dong Yue, Zhijun Zhang","doi":"10.1186/s41601-023-00325-7","DOIUrl":"https://doi.org/10.1186/s41601-023-00325-7","url":null,"abstract":"Abstract In this paper, a cloud-edge-end collaboration-based control architecture is established for frequency regulation in interconnected power systems (IPS). A model predictive control (MPC)-based load frequency control strategy for the IPS with photovoltaic aggregation and energy storage systems under model uncertainty and communication delay is proposed. This can effectively overcome the issues of model uncertainty, random load perturbation and communication delay. First, a state space model for the IPS is constructed. To coordinate the frequency and contact line power fluctuation of the IPS, a robust controller based on the theory of MPC is then designed. Then, considering the communication delay of frequency response commands during transmission, a predictive compensation mechanism is introduced to eliminate the effect of delay while considering model uncertainty. Finally, simulation results verify the effectiveness and robustness of the proposed control strategy.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136013424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqing Yao, Danyang Li, Zhiyong Li, Pengpeng Zhou, Lei Li
{"title":"Relay protection mirror operation technology based on digital twin","authors":"Zhiqing Yao, Danyang Li, Zhiyong Li, Pengpeng Zhou, Lei Li","doi":"10.1186/s41601-023-00328-4","DOIUrl":"https://doi.org/10.1186/s41601-023-00328-4","url":null,"abstract":"Abstract When conducting relay protection research, research costs can be significantly reduced if protection principle development, protection parameter verification and debugging can be carried out without relying on actual protection devices. The concept of ‘digital twin’ has made this possible, but the existing research has shortcomings in real-time data interaction ability, protection logic transparency, interface standardization, human–computer interaction etc., and consequently, mirror operation of relay protection in digital space has not been fully realized. Therefore, referring to the characteristics of digital twin, and combining with the practical application requirements in relay protection, this paper proposes the concept and characteristics of relay protection mirror operation based on digital twin. Key solutions are proposed to address the difficulties that may be encountered in the implementation of relay protection mirror operation in terms of protection principles, interfaces, real-time operation of the system, and human–computer interaction function simulation. Finally, an example of 110 kV double-bus and double-branch bus protection is used to verify the feasibility and progressiveness of the scheme proposed in this paper by comparing the action behavior and external characteristics of the twin protection and the actual protection device. The presented research can provide a reference for further in-depth research and application of relay protection using digital means.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"129 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136063820","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic economic evaluation of hundred megawatt-scale electrochemical energy storage for auxiliary peak shaving","authors":"Junhui Li, Gang Mu, Jiahui Zhang, Cuiping Li, Gangui Yan, Haotian Zhang, Guohang Chen","doi":"10.1186/s41601-023-00324-8","DOIUrl":"https://doi.org/10.1186/s41601-023-00324-8","url":null,"abstract":"Abstract With the rapid development of wind power, the pressure on peak regulation of the power grid is increased. Electrochemical energy storage is used on a large scale because of its high efficiency and good peak shaving and valley filling ability. The economic benefit evaluation of participating in power system auxiliary services has become the focus of attention since the development of grid-connected hundred megawatt-scale electrochemical energy storage systems (ESS). Based on the relationship between power and capacity in the process of peak shaving and valley filling, a dynamic economic benefit evaluation model of peak shaving assisted by hundred megawatt-scale electrochemical ESS considering the equivalent life of the battery is proposed. The model considers the investment cost of energy storage, power efficiency, and operation and maintenance costs, and analyzes the dynamic economic benefits of different energy storage technologies participating in the whole life cycle of the power grid. Then, according to the current ESS market environment, the auxiliary service compensation price, peak-valley price difference and energy storage cost unit price required to make the energy storage technology achieve the balance of payments are calculated, and the economic balance points of different energy storage types are clarified. Finally, based on the measured data of different provincial power grids, the economies of six energy storage types applied to three provincial power grids are compared and analyzed, and the rationality and effectiveness of the relevant models proposed are verified. The work has theoretical guiding significance for the economic benefit evaluation of hundred megawatt-scale electrochemical energy storage.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135093776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sliding mode controller design via delay-dependent $$H_{infty }$$ stabilization criterion for load frequency regulation","authors":"Subrat Kumar Pradhan, Dushmanta Kumar Das","doi":"10.1186/s41601-023-00322-w","DOIUrl":"https://doi.org/10.1186/s41601-023-00322-w","url":null,"abstract":"Abstract This work presents a control approach based on sliding-mode-control (SMC) to design robust $$H_{infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>∞</mml:mi> </mml:msub> </mml:math> state feedback controllers for load frequency regulation of delayed interconnected power system (IPS) with parametric uncertainties. Considering both state feedback control strategy and delayed feedback control strategy, two SMC laws are proposed. The proposed control laws are designed to improve the stability and disturbance rejection performance of delayed IPS, while stabilization criteria in the form of linear matrix inequality are derived by choosing a Lyapunov–Krasovskii functional. An artificial time-delay is incorporated in the control law design of the delayed feedback control structure to enhance the controller performance. A numerical example is considered to study the control performance of the proposed controllers and simulation results are provided to observe the dynamic response of the IPS.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"210 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nisha Kumari, Pulakraj Aryan, G. Lloyds Raja, Yogendra Arya
{"title":"Dual degree branched type-2 fuzzy controller optimized with a hybrid algorithm for frequency regulation in a triple-area power system integrated with renewable sources","authors":"Nisha Kumari, Pulakraj Aryan, G. Lloyds Raja, Yogendra Arya","doi":"10.1186/s41601-023-00317-7","DOIUrl":"https://doi.org/10.1186/s41601-023-00317-7","url":null,"abstract":"Abstract The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation (DRG) sources such as solar and wind necessitate the use of an efficient load frequency control (LFC) technique. Therefore, a hybrid version of two metaheuristic algorithms (arithmetic optimization and African vulture's optimization algorithm) is developed. It is called the ‘arithmetic optimized African vulture's optimization algorithm (AOAVOA)’. This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system. Thermal, electric vehicle (EV), and DRG sources (including a solar panel and a wind turbine system) are connected in area-1. Area-2 involves thermal and gas-generating units (GUs), while thermal and geothermal units are linked in area-3. Practical restrictions such as thermo-boiler dynamics, thermal-governor dead-band, and generation rate constraints are also considered. The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances. By functioning as energy storage elements, EVs and DRG units can enhance dynamic responses during peak demand. As a result, the effect of the aforementioned units on dynamic reactions is also investigated. To validate its effectiveness, the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature. It is determined that the suggested AOAVOA improves fitness by 40.20% over the arithmetic optimizer (AO), while frequency regulation is improved by 4.55% over an AO-tuned type-2 fuzzy-based branched controller.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136060676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A fault segment location method for distribution networks based on spiking neural P systems and Bayesian estimation","authors":"Yi Wang, Tao Wang, Liyuan Liu","doi":"10.1186/s41601-023-00321-x","DOIUrl":"https://doi.org/10.1186/s41601-023-00321-x","url":null,"abstract":"Abstract With the increasing scale of distribution networks and the mass access of distributed generation, traditional centralized fault location methods can no longer meet the performance requirements of speed and high accuracy. Therefore, this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation. First, the distribution network system topology is decoupled into single-branch networks. A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment, and its matrix reasoning algorithm is executed to obtain a preliminary set of location results. Finally, the Bayesian estimation and contradiction principle are applied to verify and correct the initial results to obtain the final location results. Simulation results based on the IEEE 33-node system validate the feasibility and effectiveness of the proposed method.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136236075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An improved prediction method of subsequent commutation failure of an LCC-HVDC considering sequential control response","authors":"Jinxin Ouyang, Xinyu Pan, Junjun Ye, Chao Xiao, Yanbo Diao, Qingwu Zhang","doi":"10.1186/s41601-023-00323-9","DOIUrl":"https://doi.org/10.1186/s41601-023-00323-9","url":null,"abstract":"Abstract Subsequent commutation failure (SCF) can be easily generated during the first commutation failure (CF) recovery process in a line-commutated converter-based high voltage direct-current system. SCF poses a significant threat to the safe and stable operation of power systems, and accurate prediction of CF is thus important. However, SCF is affected by the operating characteristics of the main circuit and the coupling effects of sequential control response in the inverter station. These are difficult to predict accurately. In this paper, a new SCF prediction method considering the control response is proposed based on the physical principle of SCF. The time sequence and switching conditions of the controllers at different stages of the first CF recovery process are described, and the corresponding equations of commutation voltage affected by different controllers are derived. The calculation method of the SCF threshold voltage is proposed, and the prediction method is established. Simulations show that the proposed method can predict SCF accurately and provide useful tools to suppress SCF.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136310741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-stage stochastic-robust model for the self-scheduling problem of an aggregator participating in energy and reserve markets","authors":"Jian Wang, Ning Xie, Chunyi Huang, Yong Wang","doi":"10.1186/s41601-023-00320-y","DOIUrl":"https://doi.org/10.1186/s41601-023-00320-y","url":null,"abstract":"Abstract This paper addresses a two-stage stochastic-robust model for the day-ahead self-scheduling problem of an aggregator considering uncertainties. The aggregator, which integrates power and capacity of small-scale prosumers and flexible community-owned devices, trades electric energy in the day-ahead (DAM) and real-time energy markets (RTM), and trades reserve capacity and deployment in the reserve capacity (RCM) and reserve deployment markets (RDM). The ability of the aggregator providing reserve service is constrained by the regulations of reserve market rules, including minimum offer/bid size and minimum delivery duration. A combination approach of stochastic programming (SP) and robust optimization (RO) is used to model different kinds of uncertainties, including those of market price, power/demand and reserve deployment. The risk management of the aggregator is considered through conditional value at risk (CVaR) and fluctuation intervals of the uncertain parameters. Case studies numerically show the economic revenue and the energy-reserve schedule of the aggregator with participation in different markets, reserve regulations, and risk preferences.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135490145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}