Dual degree branched type-2 fuzzy controller optimized with a hybrid algorithm for frequency regulation in a triple-area power system integrated with renewable sources
Nisha Kumari, Pulakraj Aryan, G. Lloyds Raja, Yogendra Arya
{"title":"Dual degree branched type-2 fuzzy controller optimized with a hybrid algorithm for frequency regulation in a triple-area power system integrated with renewable sources","authors":"Nisha Kumari, Pulakraj Aryan, G. Lloyds Raja, Yogendra Arya","doi":"10.1186/s41601-023-00317-7","DOIUrl":null,"url":null,"abstract":"Abstract The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation (DRG) sources such as solar and wind necessitate the use of an efficient load frequency control (LFC) technique. Therefore, a hybrid version of two metaheuristic algorithms (arithmetic optimization and African vulture's optimization algorithm) is developed. It is called the ‘arithmetic optimized African vulture's optimization algorithm (AOAVOA)’. This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system. Thermal, electric vehicle (EV), and DRG sources (including a solar panel and a wind turbine system) are connected in area-1. Area-2 involves thermal and gas-generating units (GUs), while thermal and geothermal units are linked in area-3. Practical restrictions such as thermo-boiler dynamics, thermal-governor dead-band, and generation rate constraints are also considered. The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances. By functioning as energy storage elements, EVs and DRG units can enhance dynamic responses during peak demand. As a result, the effect of the aforementioned units on dynamic reactions is also investigated. To validate its effectiveness, the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature. It is determined that the suggested AOAVOA improves fitness by 40.20% over the arithmetic optimizer (AO), while frequency regulation is improved by 4.55% over an AO-tuned type-2 fuzzy-based branched controller.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"62 1","pages":"0"},"PeriodicalIF":8.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection and Control of Modern Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41601-023-00317-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation (DRG) sources such as solar and wind necessitate the use of an efficient load frequency control (LFC) technique. Therefore, a hybrid version of two metaheuristic algorithms (arithmetic optimization and African vulture's optimization algorithm) is developed. It is called the ‘arithmetic optimized African vulture's optimization algorithm (AOAVOA)’. This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system. Thermal, electric vehicle (EV), and DRG sources (including a solar panel and a wind turbine system) are connected in area-1. Area-2 involves thermal and gas-generating units (GUs), while thermal and geothermal units are linked in area-3. Practical restrictions such as thermo-boiler dynamics, thermal-governor dead-band, and generation rate constraints are also considered. The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances. By functioning as energy storage elements, EVs and DRG units can enhance dynamic responses during peak demand. As a result, the effect of the aforementioned units on dynamic reactions is also investigated. To validate its effectiveness, the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature. It is determined that the suggested AOAVOA improves fitness by 40.20% over the arithmetic optimizer (AO), while frequency regulation is improved by 4.55% over an AO-tuned type-2 fuzzy-based branched controller.
期刊介绍:
Protection and Control of Modern Power Systems (PCMP) is the first international modern power system protection and control journal originated in China. The journal is dedicated to presenting top-level academic achievements in this field and aims to provide a platform for international researchers and engineers, with a special focus on authors from China, to maximize the papers' impact worldwide and contribute to the development of the power industry. PCMP is sponsored by Xuchang Ketop Electrical Research Institute and is edited and published by Power System Protection and Control Press.
PCMP focuses on advanced views, techniques, methodologies, and experience in the field of protection and control of modern power systems to showcase the latest technological achievements. However, it is important to note that the journal will cease to be published by SpringerOpen as of 31 December 2023. Nonetheless, it will continue in cooperation with a new publisher.