{"title":"Optimizing an FPR-based supplier-retailer integrated problem with an outsourcer, rework, expedited rate, and probabilistic breakdown","authors":"Y. Chiu, Chih-Yun Ke, Tiffany Chiu, Tsu-Ming Yeh","doi":"10.5267/j.ijiec.2022.5.004","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.5.004","url":null,"abstract":"Internal supply chains exist in many global enterprises, where manufacturing tasks and sales jobs operate separately, but the management needs to integrate their financial performance reports. In addition, the fabrication planning must meet specific operational goals, such as meeting external clients’ requirements on quality and short order due dates, avoiding internal fabricating interruptions due to inevitable equipment breakdowns, and minimizing overall manufacturing and stock holding costs. Motivated by helping multinational corporations deal with the issues mentioned earlier, this study aims to optimize a finite production rate (FPR)-based supplier-retailer cooperative problem with multi-shipment, rework, subcontracting, probabilistic failure, and expedited rate. Wherein using an outsourcer and expedited-rate help shorten the needed batch producing time significantly; the rework of defects and corrective action on unanticipated breakdown assist in up-keeping the quality and avoiding fabricating delay. We develop an FPR-based model to cautiously represent the considered manufacturing features and activities involved in transporting end products and retailers’ stock holding. Model’s formulating and investigating assists us in gaining the function of operating costs. In addition, optimization procedures with a proposed algorithm help us verify its convexity and decide the model’s best fabricating runtime solution. Finally, we validate how this study works and what important information our model can disclose using a numerical example to facilitate management’s decision-making to end our work.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"1 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83368385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Escobar, José Luis Ramírez Duque, R. García-Cáceres
{"title":"A granular tabu search for the refrigerated vehicle routing problem with homogeneous fleet","authors":"J. Escobar, José Luis Ramírez Duque, R. García-Cáceres","doi":"10.5267/j.ijiec.2021.6.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2021.6.001","url":null,"abstract":"The Refrigerated Capacitated Vehicle Routing Problem (RCVRP) considers a homogeneous fleet with a refrigerated system to decide the selection of routes to be performed according to customers' requirements. The aim is to keep the energy consumption of the routes as low as possible. We use a thermodynamic model to understand the unloading of products from trucks and the variables' efficiency, such as the temperature during the day influencing energy consumption. By considering various neighborhoods and a shaking procedure, this paper proposes a Granular Tabu Search scheme to solve the RCVRP. Computational tests using adapted benchmark instances from the literature demonstrate that the suggested method delivers high-quality solutions within short computing times, illustrating the refrigeration system's effect on routing decisions.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"99 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74984178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Minimizing total tardiness for the order scheduling problem with sequence-dependent setup times using hybrid matheuristics","authors":"Massimo Pinto Antonioli, C. Rodrigues, B. Prata","doi":"10.5267/j.ijiec.2021.11.002","DOIUrl":"https://doi.org/10.5267/j.ijiec.2021.11.002","url":null,"abstract":"This paper aims at presenting a customer order scheduling environment in which the setup times are explicit and depend on the production sequence. The considered objective function is the total tardiness minimization. Since the variant under study is NP-hard, we propose a mixed-integer linear programming (MILP) model, an adaptation of the Order-Scheduling Modified Due-Date heuristic (OMDD) (referred to as Order-Scheduling Modified Due-Date Setup (OMMD-S)), an adaptation of the Framinan and Perez-Gonzalez heuristic (FP) (hereinafter referred to as Framinan and Perez-Gonzalez Setup (FP-S)), a matheuristic with Same Permutation in All Machines (SPAM), and the hybrid matheuristic SPAM-SJPO based on Job-Position Oscillation (JPO). The algorithms under comparison have been compared on an extensive benchmark of randomly generated test instances, considering two performance measures: Relative Deviation Index (RDI) and Success Rate (SR). For the small-size evaluated instances, the SPAM is the most efficient algorithm, presenting the better values of RDI and SR. For the large-size evaluated instances, the hybrid matheuristic SPAM-JPO and MILP model are the most efficient methods.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"37 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77782008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Contract design for the fourth party logistics considering tardiness risk","authors":"H. Wang, M. Huang, X. Feng, Y. Zhou","doi":"10.5267/j.ijiec.2021.9.002","DOIUrl":"https://doi.org/10.5267/j.ijiec.2021.9.002","url":null,"abstract":"Nowadays, tardiness has become a significant risk in the logistics industry. To address this problem, we introduce the tardiness risk index to quantify both the magnitude of the tardiness risk and the maximum probability of tardiness occurring. In this paper, we investigate the contract design problem with the tardiness risk index to mitigate the tardiness risk when a fourth-party logistics company (4PL) delegates the delivery task of a client to a third-party logistics company (3PL). Specifically, the contracts are designed in a decentralized system with information symmetry and information asymmetry when 3PL is risk neutral and risk averse. Furthermore, the incentive problems demonstrated that the 3PL is encouraged to make the optimal effort for delivery and the 4PL determines the optimal fixed payment and penalty coefficient. Through analyzing the experimental simulation results, we can find that the contract can effectively mitigate the tardiness risk and the maximum probability of risk occurrence.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"20 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84580748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanshyi Peter Chiu, Yunsen Wang, Tsu-Ming Yeh, S. Chiu
{"title":"Fabrication runtime decision for a hybrid system incorporating probabilistic breakdowns, scrap, and overtime","authors":"Yuanshyi Peter Chiu, Yunsen Wang, Tsu-Ming Yeh, S. Chiu","doi":"10.5267/j.ijiec.2022.4.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.4.001","url":null,"abstract":"Manufacturers today need to optimize their fabrication runtime decision by meeting short customer order due dates externally and managing the potentially unreliable machines and manufacturing processes internally. Outsourcing and overtime are commonly utilized strategies to expedite fabricating time. Additionally, detailed analyses and necessary actions on inevitable product defects (i.e., removal of scraps) and equipment breakdowns (such as machine repairing) are prerequisites to fabrication runtime planning. Motivated by assisting today’s manufacturers decide the best batch runtime plan under the situations mentioned above, this study applies mathematical modeling to a hybrid fabrication problem that incorporates partial overtime and outsourcing, inevitable product defects, and a Poisson-distributed breakdown. We develop a model to accurately represent the problem’s characteristics. Formulations and detailed model analyses allow us to find the cost function first. Differential equations and algorithms help us confirm the gain function’s convexity and find the best runtime decision. Lastly, we use numerical illustrations to show our study’s applicability by revealing in-depth crucial managerial information of the studied problem.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"100 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85699425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multi-depot heterogeneous fleet vehicle routing problem with time windows: Airline and roadway integrated routing","authors":"Ö. Dursun, Asuman Özger","doi":"10.5267/j.ijiec.2022.1.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.1.001","url":null,"abstract":"In transportation, the multi-depot heterogeneous fleet vehicle routing problem with time windows (MDHFVRPTW) is one of the hard-to-solve real-life problems. In the study, a new node-based MDHFVRPTW has been developed. Unlike other studies in the literature, heterogeneous fleets including both airline and roadway vehicles are used for routing. In the model, real-life data of the airline and roadway are taken into consideration. In particular, important aviation constraints such as the range of the aircraft, landing and take-off cycle (LTO) cost according to the engine type, and the penalty cost are presented in the model. The problem is analysed by using narrow and wide time windows, which is the realization of fast and normal demand. A new hybrid genetic algorithm with variable neighborhood search (HGA-VNS) has been proposed for the solution of the MDHFVRPTW model. In the solution of the model, remarkable results have been obtained with the HGA-VNS algorithm compared to the genetic algorithm and off-the-shelf solvers. Also, the HGA-VNS algorithm has been tested with small and large-scale instances and compared with other studies in the literature. It is thought that the proposed MDHFVRPTW model and the developed HGA-VNS algorithm will bring a different perspective to transportation.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"11 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85956169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new hybrid algorithm based on MVO and SA for function optimization","authors":"Ö. Yılmaz, A. A. Altun, Murat Köklü","doi":"10.5267/j.ijiec.2021.11.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2021.11.001","url":null,"abstract":"Hybrid algorithms are widely used today to increase the performance of existing algorithms. In this paper, a new hybrid algorithm called IMVOSA that is based on multi-verse optimizer (MVO) and simulated annealing (SA) is used. In this model, a new method called the black hole selection (BHS) is proposed, in which exploration and exploitation can be increased. In the BHS method, the acceptance probability feature of the SA algorithm is used to increase exploitation by searching for the best regions found by the MVO algorithm. The proposed IMVOSA algorithm has been tested on 50 benchmark functions. The performance of IMVOSA has been compared with other latest and well-known metaheuristic algorithms. The consequences show that IMVOSA produces highly successful and competitive results.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"7 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77672760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assembly line rebalancing and worker assignment considering ergonomic risks in an automotive parts manufacturing plant","authors":"Tolga Çimen, A. Baykasoğlu, Sebnem Demirkol Akyol","doi":"10.5267/j.ijiec.2022.2.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.2.001","url":null,"abstract":"This paper recommends a new kind of assembly line rebalancing and worker assignment problem, taking ergonomic risks into account. Assembly line rebalancing problem (ALRBP) occurs when a current line must be rebalanced due to conditions such as changes in demand, production processes, product design, or quality issues. Although there are several research attempts on ALRBP in the relevant literature, only a few studies consider workers as unique individuals. This paper aims to solve the double reassignment problem: tasks to workers and workers to stations, considering ergonomic risk factors. This paper is the first study that comprises worker assignment and ergonomic constraints in ALRBP literature to the best of our knowledge. Objectives of our novel problem are to minimize rebalancing cost, which includes transportation of tasks and workers and minimize stations' ergonomic risk factors. A randomized constructive rule-based heuristic approach is developed to cope with the problem. The proposed solution approach is applied to benchmark data, and obtained results are promising. Moreover, the proposed solution approach is implemented in an automotive parts manufacturing plant.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"2 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90537542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Memetic algorithm for the dynamic vehicle routing problem with simultaneous delivery and pickup","authors":"Amina Berahhou, Y. Benadada, Khaoula Bouanane","doi":"10.5267/j.ijiec.2022.6.001","DOIUrl":"https://doi.org/10.5267/j.ijiec.2022.6.001","url":null,"abstract":"In recent years, the Vehicle Routing Problem (VRP) has become an important issue for distribution companies. Also, the rapid development of communication means and the appearance of reverse logistics have given rise to new variants of the VRP. This article deals with an important variant of the VRP which is Dynamic Vehicle Routing Problem with Simultaneous Delivery and Pickup (DVRPSDP), in which new customers appear during the working day and each customer requires simultaneous delivery and pickup. A Memetic Algorithm (MA) that combines Genetic Algorithm (GA) and local search procedure have been proposed to solve the problem. The performance of the algorithm is evaluated with the tests carried out on a set of benchmarks found in the literature. The proposed memetic algorithm is very efficient and gives many good solutions.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"20 1","pages":""},"PeriodicalIF":3.3,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75469050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanshyi Peter Chiu, Tiffany Chiu, Fan-Yun Pai, H. Wu
{"title":"A producer-retailer incorporated multi-item EPQ problem with delayed differentiation, the expedited rate for common parts, multi-delivery and scrap","authors":"Yuanshyi Peter Chiu, Tiffany Chiu, Fan-Yun Pai, H. Wu","doi":"10.5267/J.IJIEC.2021.5.001","DOIUrl":"https://doi.org/10.5267/J.IJIEC.2021.5.001","url":null,"abstract":"Transnational producers facing the present-day competitive global supply-chain environments need to pursue the most appropriate manufacturing scheme, quality screening task, and stock shipping plan to satisfy customer’s timely multi-item requirements under minimum overall product fabrication-delivery expenses. This study develops a producer-retailer incorporated multi-item two-stage economic production quantity- (EPQ-) based system with delayed differentiation, expedited-rate for common parts, multiple deliveries plan, and random scrap. It aims to assist current manufacturing firms in achieving the aforementioned operating goals. Mathematical methods help us build an analytical model to explicitly portray the studied problem’s features and derive its overall system expenses. Hessian matrix equations and optimization approaches help us prove convexity and derive the cost-minimized fabrication- delivery decision. This study gives a simulated example to illustrate the research outcome’s applicability and the proposed model’s capabilities numerically. Consequently, diverse crucial information becomes obtainable to the manufacturers to facilitate various operating decision makings as follows: (i) the cost-minimized fabrication-delivery policy; (ii) the behavior of system’s overall expenses and operating policy regarding mean scrap rate, and different relationships between common part’s values and completion-rate; (iii) the system’s detailed cost components; (iv) the system’s overall expenses, utilization, and common part’s uptime concerning different common part’s expedited rates; and (v) the collective effects of critical system features on the overall expenses, uptime, and optimal cycle length, etc.","PeriodicalId":51356,"journal":{"name":"International Journal of Industrial Engineering Computations","volume":"8 1","pages":"427-440"},"PeriodicalIF":3.3,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83469156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}