{"title":"Decategorified Heegaard Floer theory and actions of both $E$ and $F$","authors":"Andrew Manion","doi":"10.4171/qt/204","DOIUrl":"https://doi.org/10.4171/qt/204","url":null,"abstract":"","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"4 3","pages":""},"PeriodicalIF":1.1,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139447005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Curves in the disc, the type $B$ braid group, and a type $B$ zigzag algebra","authors":"Edmund Heng, Kie Seng Nge","doi":"10.4171/qt/198","DOIUrl":"https://doi.org/10.4171/qt/198","url":null,"abstract":"","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"725 ","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139248767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invariants of $mathbb{Z}/p$-homology 3-spheres from the abelianization of the level-$p$ mapping class group","authors":"Wolfgang Pitsch, Ricard Riba","doi":"10.4171/qt/196","DOIUrl":"https://doi.org/10.4171/qt/196","url":null,"abstract":"","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"2005 313","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139264357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluating TQFT invariants from $G$-crossed braided spherical fusion categories via Kirby diagrams with 3-handles","authors":"Manuel Bärenz","doi":"10.4171/qt/183","DOIUrl":"https://doi.org/10.4171/qt/183","url":null,"abstract":"A family of TQFTs parametrised by G-crossed braided spherical fusion categories has been defined recently as a state sum model and as a Hamiltonian lattice model. Concrete calculations of the resulting manifold invariants are scarce because of the combinatorial complexity of triangulations, if nothing else. Handle decompositions, and in particular Kirby diagrams are known to offer an economic and intuitive description of 4-manifolds. We show that if 3-handles are added to the picture, the state sum model can be conveniently redefined by translating Kirby diagrams into the graphical calculus of a G-crossed braided spherical fusion category. ","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"5 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136229844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Actions of $sltwo$ on algebras appearing in categorification","authors":"Ben Elias, You Qi","doi":"10.4171/qt/181","DOIUrl":"https://doi.org/10.4171/qt/181","url":null,"abstract":"","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"26 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136282070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On $mathfrak{sl}(N)$ link homology with mod $N$ coefficients","authors":"Joshua Wang","doi":"10.4171/qt/194","DOIUrl":"https://doi.org/10.4171/qt/194","url":null,"abstract":"","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"114 4‐5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantized representations of knot groups","authors":"Jun Murakami, Roland van der Veen","doi":"10.4171/qt/191","DOIUrl":"https://doi.org/10.4171/qt/191","url":null,"abstract":"We propose a new non-commutative generalization of the representation variety and the character variety of a knot group. Our strategy is to reformulate the construction of the algebra of functions on the space of representations in terms of Hopf algebra objects in a braided category (braided Hopf algebra). The construction works under the assumption that the algebra is braided commutative. The resulting knot invariant is a module with a coadjoint action. Taking the coinvariants yields a new quantum character variety that may be thought of as an alternative to the skein module. We give concrete examples for a few of the simplest knots and links.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"113 2‐3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135818389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Witten–Reshetikhin–Turaev invariants for 3-manifolds from Lagrangian intersections in configuration spaces","authors":"Cristina Ana-Maria Anghel","doi":"10.4171/qt/190","DOIUrl":"https://doi.org/10.4171/qt/190","url":null,"abstract":"In this paper we construct a topological model for the Witten-Reshetikhin-Turaev invariants for $3$-manifolds coming from the quantum group $U_q(sl(2))$, as graded intersection pairings of homology classes in configuration spaces. More precisely, for a fixed level $cN in N$ we show that the level $cN$ WRT invariant for a $3-$manifold is a state sum of Lagrangian intersections in a covering of a {bf fixed} configuration space in the punctured disk. This model brings a new perspective on the structure of the level $cN$ Witten-Reshetikhin-Turaev invariant, showing that it is completely encoded by the intersection points between certain Lagrangian submanifolds in a fixed configuration space, with additional gradings which come from a particular choice of a local system. This formula provides a new framework for investigating the open question about categorifications of the WRT invariants.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"41 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Augmented Legendrian cobordism in $J^1S^1$","authors":"Yu Pan, Dan Rutherford","doi":"10.4171/qt/195","DOIUrl":"https://doi.org/10.4171/qt/195","url":null,"abstract":"We consider Legendrian links and tangles in $J^1S^1$ and $J^1[0,1]$ equipped with Morse complex families over a field $mathbb{F}$ and classify them up to Legendrian cobordism. When the coefficient field is $mathbb{F}_2$, this provides a cobordism classification for Legendrians equipped with augmentations of the Legendrian contact homology DG-algebras. A complete set of invariants, for which arbitrary values may be obtained, is provided by the fiber cohomology, a graded monodromy matrix, and a mod $2$ spin number. We apply the classification to construct augmented Legendrian surfaces in $J^1M$ with $mathrm{dim} M = 2$ realizing any prescribed monodromy representation, $Phi:pi_1(M,x_0) to mathrm{GL}(mathbf{n}, mathbb{F})$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134973344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mapping class group representations and Morita classes of algebras","authors":"Iordanis Romaidis, Ingo Runkel","doi":"10.4171/qt/192","DOIUrl":"https://doi.org/10.4171/qt/192","url":null,"abstract":"A modular fusion category $mathcal{C}$ allows one to define projective representations of the mapping class groups of closed surfaces of any genus. We show that if all these representations are irreducible, then $mathcal{C}$ has a unique Morita class of simple non-degenerate algebras, namely, that of the tensor unit. This improves on a result by Andersen and Fjelstad, albeit under stronger assumptions. One motivation to look at this problem comes from questions in three-dimensional quantum gravity.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135666552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}