$J^1S^1$中的增广legendard协同

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2023-10-25 DOI:10.4171/qt/195
Yu Pan, Dan Rutherford
{"title":"$J^1S^1$中的增广legendard协同","authors":"Yu Pan, Dan Rutherford","doi":"10.4171/qt/195","DOIUrl":null,"url":null,"abstract":"We consider Legendrian links and tangles in $J^1S^1$ and $J^1\\[0,1]$ equipped with Morse complex families over a field $\\mathbb{F}$ and classify them up to Legendrian cobordism. When the coefficient field is $\\mathbb{F}\\_2$, this provides a cobordism classification for Legendrians equipped with augmentations of the Legendrian contact homology DG-algebras. A complete set of invariants, for which arbitrary values may be obtained, is provided by the fiber cohomology, a graded monodromy matrix, and a mod $2$ spin number. We apply the classification to construct augmented Legendrian surfaces in $J^1M$ with $\\mathrm{dim} M = 2$ realizing any prescribed monodromy representation, $\\Phi:\\pi\\_1(M,x\\_0) \\to \\mathrm{GL}(\\mathbf{n}, \\mathbb{F})$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"16 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Augmented Legendrian cobordism in $J^1S^1$\",\"authors\":\"Yu Pan, Dan Rutherford\",\"doi\":\"10.4171/qt/195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider Legendrian links and tangles in $J^1S^1$ and $J^1\\\\[0,1]$ equipped with Morse complex families over a field $\\\\mathbb{F}$ and classify them up to Legendrian cobordism. When the coefficient field is $\\\\mathbb{F}\\\\_2$, this provides a cobordism classification for Legendrians equipped with augmentations of the Legendrian contact homology DG-algebras. A complete set of invariants, for which arbitrary values may be obtained, is provided by the fiber cohomology, a graded monodromy matrix, and a mod $2$ spin number. We apply the classification to construct augmented Legendrian surfaces in $J^1M$ with $\\\\mathrm{dim} M = 2$ realizing any prescribed monodromy representation, $\\\\Phi:\\\\pi\\\\_1(M,x\\\\_0) \\\\to \\\\mathrm{GL}(\\\\mathbf{n}, \\\\mathbb{F})$.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/195\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/qt/195","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了在场$\mathbb{F}$上具有莫尔斯复族的$J^1S^1$和$J^1\[0,1]$中的勒让连链和缠结,并将它们分类为勒让连协。当系数域为$\mathbb{F}\_2$时,这为配备了Legendrian接触同调dg -代数的增广的Legendrian提供了一种协配分类。由光纤上同调、梯度单矩阵和模$2$自旋数提供了一组可以得到任意值的不变量。我们应用分类构造了$J^1M$中的增广Legendrian曲面,其中$\mathrm{dim} M = 2$实现了任意规定的单形表示,$\Phi:\pi\_1(M,x\_0) \to \mathrm{GL}(\mathbf{n}, \mathbb{F})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmented Legendrian cobordism in $J^1S^1$
We consider Legendrian links and tangles in $J^1S^1$ and $J^1\[0,1]$ equipped with Morse complex families over a field $\mathbb{F}$ and classify them up to Legendrian cobordism. When the coefficient field is $\mathbb{F}\_2$, this provides a cobordism classification for Legendrians equipped with augmentations of the Legendrian contact homology DG-algebras. A complete set of invariants, for which arbitrary values may be obtained, is provided by the fiber cohomology, a graded monodromy matrix, and a mod $2$ spin number. We apply the classification to construct augmented Legendrian surfaces in $J^1M$ with $\mathrm{dim} M = 2$ realizing any prescribed monodromy representation, $\Phi:\pi\_1(M,x\_0) \to \mathrm{GL}(\mathbf{n}, \mathbb{F})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信