Witten–Reshetikhin–Turaev invariants for 3-manifolds from Lagrangian intersections in configuration spaces

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2023-11-01 DOI:10.4171/qt/190
Cristina Ana-Maria Anghel
{"title":"Witten–Reshetikhin–Turaev invariants for 3-manifolds from Lagrangian intersections in configuration spaces","authors":"Cristina Ana-Maria Anghel","doi":"10.4171/qt/190","DOIUrl":null,"url":null,"abstract":"In this paper we construct a topological model for the Witten-Reshetikhin-Turaev invariants for $3$-manifolds coming from the quantum group $U_q(sl(2))$, as graded intersection pairings of homology classes in configuration spaces. More precisely, for a fixed level $\\cN \\in \\N$ we show that the level $\\cN$ WRT invariant for a $3-$manifold is a state sum of Lagrangian intersections in a covering of a {\\bf fixed} configuration space in the punctured disk. This model brings a new perspective on the structure of the level $\\cN$ Witten-Reshetikhin-Turaev invariant, showing that it is completely encoded by the intersection points between certain Lagrangian submanifolds in a fixed configuration space, with additional gradings which come from a particular choice of a local system. This formula provides a new framework for investigating the open question about categorifications of the WRT invariants.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"41 10","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/qt/190","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we construct a topological model for the Witten-Reshetikhin-Turaev invariants for $3$-manifolds coming from the quantum group $U_q(sl(2))$, as graded intersection pairings of homology classes in configuration spaces. More precisely, for a fixed level $\cN \in \N$ we show that the level $\cN$ WRT invariant for a $3-$manifold is a state sum of Lagrangian intersections in a covering of a {\bf fixed} configuration space in the punctured disk. This model brings a new perspective on the structure of the level $\cN$ Witten-Reshetikhin-Turaev invariant, showing that it is completely encoded by the intersection points between certain Lagrangian submanifolds in a fixed configuration space, with additional gradings which come from a particular choice of a local system. This formula provides a new framework for investigating the open question about categorifications of the WRT invariants.
构型空间中拉格朗日交点上3流形的Witten-Reshetikhin-Turaev不变量
本文构造了来自量子群$U_q(sl(2))$的$3$流形的Witten-Reshetikhin-Turaev不变量的拓扑模型,作为组态空间中同调类的渐变交对。更准确地说,对于一个固定的水平$\cN \in \N$,我们证明了一个$3-$流形的水平$\cN$ WRT不变量是穿孔盘中一个{\bf固定}位形空间覆盖上的拉格朗日交点的状态和。该模型对水平$\cN$ Witten-Reshetikhin-Turaev不变量的结构带来了新的视角,表明它完全由固定位形空间中某些拉格朗日子流形之间的交点编码,并带有来自局部系统的特定选择的附加等级。该公式为研究WRT不变量的分类问题提供了一个新的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信