Cyrille Krul, Annick De Moor, Koen Stegmeijer, Reinout Stoop, Judith Van Luijk, Jan-Bas Prins
{"title":"Beyond Animal Testing Index: Benchmarking tool for a world beyond animal testing.","authors":"Cyrille Krul, Annick De Moor, Koen Stegmeijer, Reinout Stoop, Judith Van Luijk, Jan-Bas Prins","doi":"10.14573/altex.2304161","DOIUrl":"10.14573/altex.2304161","url":null,"abstract":"<p><p>While the original definition of replacement focuses on the replacement of the use of animals in science, a more contemporary definition focuses on accelerating the development and use of predictive and robust models, based on the latest science and technologies, to address scientific questions without the use of animals. The transition to animal free innovation is on the political agenda in and outside the European Union. The Beyond Animal Testing Index (BATI) is a benchmarking instrument designed to provide insight into the activities and contributions of research institutes to the transition to animal free innovation. The BATI allows participating organizations to learn from each other and stimulates continuous improvement. The BATI was modelled after the Access to Medicine Index, which benchmarks pharmaceutical companies on their efforts to make medicines widely available in developing countries. A prototype of the BATI was field-tested with three Dutch academic medical centers and two universities in 2020-2021. The field test demonstrated the usability and effectiveness of the BATI as a benchmarking tool. Analyses were performed across five different domains. The participating institutes concluded that the BATI served as an internal as well as an external stimulus to share, learn, and improve institutional strategies towards the transition to animal free innovation. The BATI also identified gaps in the development and implementation of 3R technologies. Hence, the BATI might be a suitable instrument for monitoring the effectiveness of policies. BATI version 1.0 is ready to be used for benchmarking at a larger scale.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"69-75"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9964750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing proarrhythmic potential of environmental chemicals using a high throughput in vitro-in silico model with human induced pluripotent stem cell-derived cardiomyocytes.","authors":"Hsing-Chieh Lin, Ivan Rusyn, Weihsueh A Chiu","doi":"10.14573/altex.2306231","DOIUrl":"10.14573/altex.2306231","url":null,"abstract":"<p><p>QT prolongation and the potentially fatal arrhythmia Torsades de Pointes are common causes for withdrawing or restricting drugs; however, little is known about similar liabilities of environmental chemicals. Current in vitro-in silico models for testing proarrhythmic liabilities, using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), provide an opportunity to address this data gap. These methods are still low- to medium-throughput and not suitable for testing the tens of thousands of chemicals in commerce. We hypothesized that combining high-throughput population- based in vitro testing in hiPSC-CMs with a fully in silico data analysis workflow can offer sensitive and specific predictions of proarrhythmic potential. We calibrated the model with a published hiPSC-CM dataset of drugs known to be positive or negative for proarrhythmia and tested its performance using internal cross-validation and external validation. Additionally, we used computational down-sampling to examine three study designs for hiPSC-CM data: one replicate of one donor, five replicates of one donor, and one replicate of a population of five donors. We found that the population of five donors had the best performance for predicting proarrhythmic potential. The resulting model was then applied to predict the proarrhythmic potential of environmental chemicals, additionally characterizing risk through margin of exposure (MOE) calculations. Out of over 900 environmental chemicals tested, over 150 were predicted to have proarrhythmic potential, but only seven chemicals had a MOE < 1. We conclude that a high-throughput in vitro-in silico approach using population-based hiPSC-CM testing provides a reasonable strategy to screen environmental chemicals for proarrhythmic potential.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"37-49"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898275/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sivakumar Murugadoss, Ivana Vinković Vrček, Alexandra Schaffert, Martin Paparella, Barbara Pem, Anita Sosnowska, Maciej Stępnik, Marvin Martens, Egon L Willighagen, Tomasz Puzyn, Mihaela Roxana Cimpan, Frauke Lemaire, Birgit Mertens, Maria Dusinska, Valérie Fessard, Peter H Hoet
{"title":"Linking nanomaterial-induced mitochondrial dysfunction to existing adverse outcome pathways for chemicals.","authors":"Sivakumar Murugadoss, Ivana Vinković Vrček, Alexandra Schaffert, Martin Paparella, Barbara Pem, Anita Sosnowska, Maciej Stępnik, Marvin Martens, Egon L Willighagen, Tomasz Puzyn, Mihaela Roxana Cimpan, Frauke Lemaire, Birgit Mertens, Maria Dusinska, Valérie Fessard, Peter H Hoet","doi":"10.14573/altex.2305011","DOIUrl":"10.14573/altex.2305011","url":null,"abstract":"<p><p>The adverse outcome pathway (AOP) framework plays a crucial role in the paradigm shift of toxicity testing towards the development and use of new approach methodologies. AOPs developed for chemicals are in theory applicable to nanomaterials (NMs). However, only initial efforts have been made to integrate information on NM-induced toxicity into existing AOPs. In a previous study, we identified AOPs in the AOP-Wiki associated with the molecular initiating events (MIEs) and key events (KEs) reported for NMs in scientific literature. In a next step, we analyzed these AOPs and found that mitochondrial toxicity plays a significant role in several of them at the molecular and cellular levels. In this study, we aimed to generate hypothesis-based AOPs related to NM-induced mitochondrial toxicity. This was achieved by integrating knowledge on NM-induced mitochondrial toxicity into all existing AOPs in the AOP-Wiki, which already includes mitochondrial toxicity as a MIE/KE. Several AOPs in the AOP-Wiki related to the lung, liver, cardiovascular and nervous system, with extensively defined KEs and key event relationships (KERs), could be utilized to develop AOPs that are relevant for NMs. However, the majority of the studies included in our literature review were of poor quality, particularly in reporting NM physicochemical characteristics, and NM-relevant mitochondrial MIEs were rarely reported. This study highlights the potential role of NM-induced mitochondrial toxicity in human-relevant adverse outcomes and identifies useful AOPs in the AOP-Wiki for the development of AOPs for NMs.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"76-90"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10396093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Véronique M P De Bruijn, Willem Te Kronnie, Ivonne M C M Rietjens, Hans Bouwmeester
{"title":"Intestinal in vitro transport assay combined with physiologically based kinetic modeling as a tool to predict bile acid levels in vivo.","authors":"Véronique M P De Bruijn, Willem Te Kronnie, Ivonne M C M Rietjens, Hans Bouwmeester","doi":"10.14573/altex.2302011","DOIUrl":"10.14573/altex.2302011","url":null,"abstract":"<p><p>Bile acid homeostasis is vital for numerous metabolic and immune functions in humans. The enterohepatic circulation of bile acids is extremely efficient, with ~95% of intestinal bile acids being reabsorbed. Disturbing intestinal bile acid uptake is expected to substantially affect intestinal and systemic bile acid levels. Here, we aimed to predict the effects of apical sodium-dependent bile acid transporter (ASBT)-inhibition on systemic plasma levels. For this, we combined in vitro Caco-2 cell transport assays with physiologically based (PBK) modeling. We used the selective ASBT-inhibitor odevixibat (ODE) as a model compound. Caco-2 cells grown on culture inserts were used to obtain transport kinetic parameters of glycocholic acid (GCA). The apparent Michaelis-Menten constant (Km,app), apparent maximal intestinal transport rate (Vmax,app), and ODE’s inhibitory constant (Ki) were determined for GCA. These kinetic parameters were incorporated into a PBK model and used to predict the ASBT inhibition effects on plasma bile acid levels. GCA is transported over Caco-2 cells in an active and sodium-dependent manner, indicating the presence of functional ASBT. ODE inhibited GCA transport dose-dependently. The PBK model predicted that oral doses of ODE reduced conjugated bile acid levels in plasma. Our simulations match in vivo data and provide a first proof-of-principle for the incorporation of active intestinal bile acid uptake in a bile acid PBK model. This approach could in future be of use to predict the effects of other ASBT-inhibitors on plasma and intestinal bile acid levels.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"20-36"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9911350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark
{"title":"Why adverse outcome pathways need to be FAIR.","authors":"Clemens Wittwehr, Laure-Alix Clerbaux, Stephen Edwards, Michelle Angrish, Holly Mortensen, Annamaria Carusi, Maciej Gromelski, Eftychia Lekka, Vassilis Virvilis, Marvin Martens, Luiz Olavo Bonino da Silva Santos, Penny Nymark","doi":"10.14573/altex.2307131","DOIUrl":"10.14573/altex.2307131","url":null,"abstract":"<p><p>Adverse outcome pathways (AOPs) provide evidence for demonstrating and assessing causality between measurable toxicological mechanisms and human or environmental adverse effects. AOPs have gained increasing attention over the past decade and are believed to provide the necessary steppingstone for more effective risk assessment of chemicals and materials and moving beyond the need for animal testing. However, as with all types of data and knowledge today, AOPs need to be reusable by machines, i.e., machine-actionable, in order to reach their full impact potential. Machine-actionability is supported by the FAIR principles, which guide findability, accessibility, interoperability, and reusability of data and knowledge. Here, we describe why AOPs need to be FAIR and touch on aspects such as the improved visibility and the increased trust that FAIRification of AOPs provides.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"50-56"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11177558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9917206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yvonne C M Staal, Liesbeth Geraets, Barbara Rothen-Rutishauser, Martin J D Clift, Hedwig Braakhuis, Anne S Kienhuis, Peter M J Bos
{"title":"The importance of variations in in vitro dosimetry to support risk assessment of inhaled toxicants.","authors":"Yvonne C M Staal, Liesbeth Geraets, Barbara Rothen-Rutishauser, Martin J D Clift, Hedwig Braakhuis, Anne S Kienhuis, Peter M J Bos","doi":"10.14573/altex.2305311","DOIUrl":"10.14573/altex.2305311","url":null,"abstract":"<p><p>In vitro methods provide a key opportunity to model human-relevant exposure scenarios for hazard identification of inhaled toxicants. Compared to in vivo tests, in vitro methods have the advantage of assessing effects of inhaled toxicants caused by differences in dosimetry, e.g., variations in concentration (exposure intensity), exposure duration, and exposure frequency, in an easier way. Variations in dosimetry can be used to obtain information on adverse effects in human-relevant exposure scenarios that can be used for risk assessment. Based on the published literature of exposure approaches using air-liquid interface models of the respiratory tract, supplemented with additional experimental data from the EU H2020 project “PATROLS” and research funded by the Dutch Ministry of Agriculture, Nature and Food Quality, the advantages and disadvantages of different exposure methods and considerations to design an experimental setup are summarized and discussed. As the cell models used are models for the respiratory epithelium, our focus is on the local effects in the airways. In conclusion, in order to generate data from in vitro methods for risk assessment of inhaled toxicants it is recommended that (1) it is considered what information really is needed for hazard or risk assessment; (2) the exposure system that is most suitable for the chemical to be assessed is chosen; (3) a deposited dose that mimics deposition in the human respiratory tract is used, and (4) the post-exposure sampling methodology should be carefully considered and relevant to the testing strategy used.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"91-103"},"PeriodicalIF":5.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexandra Maertens, Eric Antignac, Emilio Benfenati, Denise Bloch, Ellen Fritsche, Sebastian Hoffmann, Joanna Jaworska, George Loizou, Kevin McNally, Przemyslaw Piechota, Erwin L Roggen, Marc Teunis, Thomas Hartung
{"title":"The probable future of toxicology - probabilistic risk assessment.","authors":"Alexandra Maertens, Eric Antignac, Emilio Benfenati, Denise Bloch, Ellen Fritsche, Sebastian Hoffmann, Joanna Jaworska, George Loizou, Kevin McNally, Przemyslaw Piechota, Erwin L Roggen, Marc Teunis, Thomas Hartung","doi":"10.14573/altex.2310301","DOIUrl":"10.14573/altex.2310301","url":null,"abstract":"<p><p>Both because of the shortcomings of existing risk assessment methodologies, as well as newly available tools to predict hazard and risk with machine learning approaches, there has been an emerging emphasis on probabilistic risk assessment. Increasingly sophisticated AI models can be applied to a plethora of exposure and hazard data to obtain not only predictions for particular endpoints but also to estimate the uncertainty of the risk assessment outcome. This provides the basis for a shift from deterministic to more probabilistic approaches but comes at the cost of an increased complexity of the process as it requires more resources and human expertise. There are still challenges to overcome before a probabilistic paradigm is fully embraced by regulators. Based on an earlier white paper (Maertens et al., 2022), a workshop discussed the prospects, challenges and path forward for implementing such AI-based probabilistic hazard assessment. Moving forward, we will see the transition from categorized into probabilistic and dose-dependent hazard outcomes, the application of internal thresholds of toxicological concern for data-poor substances, the acknowledgement of user-friendly open-source software, a rise in the expertise of toxicologists required to understand and interpret artificial intelligence models, and the honest communication of uncertainty in risk assessment to the public.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"273-281"},"PeriodicalIF":5.6,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139433258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Monica Vaccari, Stefania Serra, Andrea Ranzi, Federico Aldrovandi, Giangabriele Maffei, Maria G Mascolo, Ada Mescoli, Elisa Montanari, Gelsomina Pillo, Francesca Rotondo, Ivan Scaroni, Lorenzo Vaccari, Cristina Zanzi, Tony Fletcher, Martin Paparella, Annamaria Colacci
{"title":"In vitro evaluation of the carcinogenic potential of perfluorinated chemicals.","authors":"Monica Vaccari, Stefania Serra, Andrea Ranzi, Federico Aldrovandi, Giangabriele Maffei, Maria G Mascolo, Ada Mescoli, Elisa Montanari, Gelsomina Pillo, Francesca Rotondo, Ivan Scaroni, Lorenzo Vaccari, Cristina Zanzi, Tony Fletcher, Martin Paparella, Annamaria Colacci","doi":"10.14573/altex.2310281","DOIUrl":"10.14573/altex.2310281","url":null,"abstract":"<p><p>Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the major components of long-chain per- and polyfluorinated alkyl substances (PFAS), known for their chemical stability and environmental persistence. Even if PFOA and PFOS have been phased out or are limited in use, they still represent a concern for human and environmental health. Several studies have been performed to highlight the toxicological behavior of these chemicals and their mode of action (MoA). Data have suggested a causal association between PFOA or PFOS exposure and carcinogenicity in humans, but the outcomes of epidemiological studies showed some inconsistency. Moreover, the hypothesized MoA based on animal studies is considered not relevant for human cancer. To improve the knowledge on PFAS toxicology and contribute to the weight of evidence for the regulatory classification of PFAS, we used the BALB/c 3T3 cell transformation assay (CTA), an in vitro model under consideration to be included in an integrated approach to testing and assessment for non-genotoxic carcinogens (NGTxCs). PFOS and PFOA were tested at several concentrations using a validated experimental protocol. Our results demonstrate that PFOA does not induce cell transformation, whereas PFOS exposure induced a concentration-related increase of type III foci. Malignant foci formation was triggered at PFOS concentrations equal to or higher than 50 ppm and was not directly associated with cytotoxicity or proliferation induction. The divergent CTA outcomes suggest that different molecular events could be responsible for the toxicological profiles of PFOS and PFOA, which were not fully captured in our study.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"439-456"},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140861360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pelin L Candarlioglu, Louise Delsing, Lauren Gauthier, Lauren Lewis, George Papadopoulos, May Freag, Tom S Chan, Kimberly A Homan, Mick D Fellows, Amy Pointon, Kyle Kojala
{"title":"Application of microphysiological systems for nonclinical evaluation of cell therapies","authors":"Pelin L Candarlioglu, Louise Delsing, Lauren Gauthier, Lauren Lewis, George Papadopoulos, May Freag, Tom S Chan, Kimberly A Homan, Mick D Fellows, Amy Pointon, Kyle Kojala","doi":"10.14573/altex.2402201","DOIUrl":"10.14573/altex.2402201","url":null,"abstract":"<p><p>Microphysiological systems (MPS) are gaining broader application in the pharmaceutical industry but have primarily been leveraged in early discovery toxicology and pharmacology studies with small molecules. The adoption of MPS offers a promising avenue to reduce animal use, improve in-vitro-to-in-vivo translation of pharmacokinetics/pharmacodynamics and toxicity correlation, and provide mechanistic understanding of model species suitability. While MPS have demonstrated utility in these areas with small molecules and biologics, MPS models in cell therapy development have not been fully explored, let alone validated. Distinguishing features of MPS, including long-term viability and physiologically relevant expression of functional enzymes, receptors, and pharmacological targets make them attractive tools for nonclinical characterization. However, there is currently limited published evidence of MPS being utilized to study the disposition, metabolism, pharmacology, and toxicity profiles of cell therapies. This review provides an industry perspective on the nonclinical application of MPS on cell therapies, first with a focus on oncology applications followed by examples in regenerative medicine.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"469-484"},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140923542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aina Mogas Barcons, Divya M Chari, Christopher Adams
{"title":"In vitro model of neurotrauma using the chick embryo to test regenerative bioimplantation.","authors":"Aina Mogas Barcons, Divya M Chari, Christopher Adams","doi":"10.14573/altex.2304171","DOIUrl":"10.14573/altex.2304171","url":null,"abstract":"<p><p>Effective repair of spinal cord injury sites remains a major clinical challenge. One promising strategy is the implantation of multifunctional bioscaffolds to enhance nerve fiber growth, guide regenerating tissue, and modulate scarring/inflammation processes. Given their multifunctional nature, such implants require testing in models which replicate the complex neuropathological responses of spinal injury sites. This is often achieved using live, adult animal models of spinal injury. However, these have substantial drawbacks for developmental testing, including the requirement for large numbers of animals, costly infrastructure, high levels of expertise, and complex ethical processes. As an alternative, we show that organotypic spinal cord slices can be derived from the E14 chick embryo and cultured with high viability for at least 24 days, with major neural cell types detected. A transecting injury could be reproducibly introduced into the slices and characteristic neuropathological responses similar to those in adult spinal cord injury observed at the lesion margin. This included aligned astrocyte morphologies and upregulation of glial fibrillary acidic protein in astrocytes, microglial infiltration into the injury cavity, and limited nerve fiber outgrowth. Bioimplantation of a clinical grade scaffold biomaterial was able to modulate these responses, disrupting the astrocyte barrier, enhancing nerve fiber growth, and supporting immune cell invasion. Chick embryos are inexpensive and simple, requiring facile methods to generate the neurotrauma model. Our data show the chick embryo spinal cord slice system could be a replacement spinal injury model for laboratories developing new tissue engineering solutions.</p>","PeriodicalId":51231,"journal":{"name":"Altex-Alternatives To Animal Experimentation","volume":" ","pages":"202-212"},"PeriodicalIF":4.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71428862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}