Advances in Protein Chemistry最新文献

筛选
英文 中文
Beta-rolls, beta-helices, and other beta-solenoid proteins. -卷,-螺旋和其他-螺线管蛋白。
Advances in Protein Chemistry Pub Date : 2006-01-01 DOI: 10.1016/S0065-3233(06)73003-0
Andrey V Kajava, Alasdair C Steven
{"title":"Beta-rolls, beta-helices, and other beta-solenoid proteins.","authors":"Andrey V Kajava,&nbsp;Alasdair C Steven","doi":"10.1016/S0065-3233(06)73003-0","DOIUrl":"https://doi.org/10.1016/S0065-3233(06)73003-0","url":null,"abstract":"<p><p>Beta-rolls and beta-helices belong to a larger group of topologically similar proteins with solenoid folds: because their regular secondary structure elements are exclusively beta-strands, they are referred to as beta-solenoids. The number of beta-solenoids whose structures are known is now large enough to support a systematic analysis. Here we survey the distinguishing structural features of beta-solenoids, also documenting their notable diversity. Appraisal of these structures suggests a classification based on handedness, twist, oligomerization state, and coil shape. In addition, beta-solenoids are distinguished by the number of chains that wind around a common axis: the majority are single-stranded but there is a recently discovered subset of triple-stranded beta-solenoids. This survey has revealed some relationships of the amino acid sequences of beta-solenoids with their structures and functions-in particular, the repetitive character of the coil sequences and conformations that recur in tracts of tandem repeats. We have proposed the term beta-arc for the distinctive turns found in beta-solenoids and beta-arch for the corresponding strand-turn-strand motifs. The evolutionary mechanisms underlying these proteins are also discussed. This analysis has direct implications for sequence-based detection, structural prediction, and de novo design of other beta-solenoid proteins. The abundance of virulence factors, toxins and allergens among beta-solenoids, as well as commonalities of beta-solenoids with amyloid fibrils, imply that this class of folds may have a broader role in human diseases than was previously recognized. Thus, identification of genes with putative beta-solenoid domains promises to be a fertile direction in the search for viable targets in the development of new antibiotics and vaccines.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"73 ","pages":"55-96"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(06)73003-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26461782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 106
From the polymorphism of amyloid fibrils to their assembly mechanism and cytotoxicity. 从淀粉样原纤维的多态性到其组装机制和细胞毒性。
Advances in Protein Chemistry Pub Date : 2006-01-01 DOI: 10.1016/S0065-3233(06)73007-8
Laurent Kreplak, Ueli Aebi
{"title":"From the polymorphism of amyloid fibrils to their assembly mechanism and cytotoxicity.","authors":"Laurent Kreplak,&nbsp;Ueli Aebi","doi":"10.1016/S0065-3233(06)73007-8","DOIUrl":"https://doi.org/10.1016/S0065-3233(06)73007-8","url":null,"abstract":"<p><p>Extracellular amyloid deposits are present in a variety of diseases. They contain amyloid fibrils that arise from the association of proteins or peptides. At the molecular level, all these fibrils share a common assembly principle based on a conformational change of the protein precursor leading to the formation of a cross-beta sheet structure. The smallest observed fibrils in vitro, often called protofibrils, are 4-5 nm in diameter. An amyloid fibril is generally composed of several of these protofibrils and may adopt different morphologies such as ribbons, sheets, or multistranded cables. This polymorphism was observed with many different amyloid-forming peptides and proteins using electron microscopy. The need to understand the molecular origin of this effect as well as the desire to find inhibitors of fibril formation has driven researchers toward the dissection of amyloid fibril assembly pathways. We review the current knowledge on amyloid polymorphism and discuss recent findings in the field concerning amyloid fibril assembly pathways and cytotoxicity mechanisms.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"73 ","pages":"217-33"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(06)73007-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26519687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
Structural models of amyloid-like fibrils. 淀粉样原纤维的结构模型。
Advances in Protein Chemistry Pub Date : 2006-01-01 DOI: 10.1016/S0065-3233(06)73008-X
Rebecca Nelson, David Eisenberg
{"title":"Structural models of amyloid-like fibrils.","authors":"Rebecca Nelson,&nbsp;David Eisenberg","doi":"10.1016/S0065-3233(06)73008-X","DOIUrl":"https://doi.org/10.1016/S0065-3233(06)73008-X","url":null,"abstract":"<p><p>Amyloid fibrils are elongated, insoluble protein aggregates deposited in vivo in amyloid diseases, and amyloid-like fibrils are formed in vitro from soluble proteins. Both of these groups of fibrils, despite differences in the sequence and native structure of their component proteins, share common properties, including their core structure. Multiple models have been proposed for the common core structure, but in most cases, atomic-level structural details have yet to be determined. Here we review several structural models proposed for amyloid and amyloid-like fibrils and relate features of these models to the common fibril properties. We divide models into three classes: Refolding, Gain-of-Interaction, and Natively Disordered. The Refolding models propose structurally distinct native and fibrillar states and suggest that backbone interactions drive fibril formation. In contrast, the Gain-of-Interaction models propose a largely native-like structure for the protein in the fibril and highlight the importance of specific sequences in fibril formation. The Natively Disordered models have aspects in common with both Refolding and Gain-of-Interaction models. While each class of model suggests explanations for some of the common fibril properties, and some models, such as Gain-of-Interaction models with a cross-beta spine, fit a wider range of properties than others, no one class provides a complete explanation for all amyloid fibril behavior.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"73 ","pages":"235-82"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(06)73008-X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26519688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 192
X-Ray fiber and powder diffraction of PrP prion peptides. PrP朊病毒肽的x射线纤维和粉末衍射。
Advances in Protein Chemistry Pub Date : 2006-01-01 DOI: 10.1016/S0065-3233(06)73006-6
Hideyo Inouye, Daniel A Kirschner
{"title":"X-Ray fiber and powder diffraction of PrP prion peptides.","authors":"Hideyo Inouye,&nbsp;Daniel A Kirschner","doi":"10.1016/S0065-3233(06)73006-6","DOIUrl":"https://doi.org/10.1016/S0065-3233(06)73006-6","url":null,"abstract":"<p><p>A conformational change from the alpha-helical, cellular form of prion to the beta-sheet, scrapie (infectious) form is the central event for prion replication. The folding mechanism underlying this conformational change has not yet been deciphered. Here, we review prion pathology and summarize X-ray fiber and powder diffraction studies on the N-terminal fragments of prion protein and on short sequences that initiate the beta-assembly for various fibrils, including poly(L-alanine) and poly(L-glutamine). We discuss how the quarter-staggered beta-sheet assembly (like in polyalanine) and polar-zipper beta-sheet formation (like in polyglutamine) may be involved in the formation of the scrapie form of prion.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"73 ","pages":"181-215"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(06)73006-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"26519686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Microtubules and maps. 微管和地图。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(04)71007-4
Linda A Amos, Daniel Schlieper
{"title":"Microtubules and maps.","authors":"Linda A Amos,&nbsp;Daniel Schlieper","doi":"10.1016/S0065-3233(04)71007-4","DOIUrl":"https://doi.org/10.1016/S0065-3233(04)71007-4","url":null,"abstract":"<p><p>Microtubules are very dynamic polymers whose assembly and disassembly is determined by whether their heterodimeric tubulin subunits are in a straight or curved conformation. Curvature is introduced by bending at the interfaces between monomers. Assembly and disassembly are primarily controlled by the hydrolysis of guanosine triphosphate (GTP) in a site that is completed by the association of two heterodimers. However, a multitude of associated proteins are able to fine-tune these dynamics so that microtubules are assembled and disassembled where and when they are required by the cell. We review the recent progress that has been made in obtaining a glimpse of the structural interactions involved.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"71 ","pages":"257-98"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(04)71007-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25641964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 196
How hydrogen bonds shape membrane protein structure. 氢键如何塑造膜蛋白结构。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(05)72006-4
Stephen H White
{"title":"How hydrogen bonds shape membrane protein structure.","authors":"Stephen H White","doi":"10.1016/S0065-3233(05)72006-4","DOIUrl":"https://doi.org/10.1016/S0065-3233(05)72006-4","url":null,"abstract":"<p><p>The energetic cost of partitioning peptide bonds into membrane bilayers is prohibitive unless the peptide bonds participate in hydrogen bonds. However, even then there is a significant free energy penalty for dehydrating the peptide bonds that can only be overcome by favorable hydrophobic interactions. Membrane protein structure formation is thus dominated by hydrogen bonding interactions, which is the subject of this review.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"72 ","pages":"157-72"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)72006-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25944737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
Intermediate filament associated proteins. 中间丝相关蛋白。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(05)70006-1
Kathleen J Green, Michael Böhringer, Todd Gocken, Jonathan C R Jones
{"title":"Intermediate filament associated proteins.","authors":"Kathleen J Green,&nbsp;Michael Böhringer,&nbsp;Todd Gocken,&nbsp;Jonathan C R Jones","doi":"10.1016/S0065-3233(05)70006-1","DOIUrl":"https://doi.org/10.1016/S0065-3233(05)70006-1","url":null,"abstract":"<p><p>Intermediate filament associated proteins (IFAPs) coordinate interactions between intermediate filaments (IFs) and other cytoskeletal elements and organelles, including membrane-associated junctions such as desmosomes and hemidesmosomes in epithelial cells, costameres in striated muscle, and intercalated discs in cardiac muscle. IFAPs thus serve as critical connecting links in the IF scaffolding that organizes the cytoplasm and confers mechanical stability to cells and tissues. However, in recent years it has become apparent that IFAPs are not limited to structural crosslinkers and bundlers but also include chaperones, enzymes, adapters, and receptors. IF networks can therefore be considered scaffolding upon which associated proteins are organized and regulated to control metabolic activities and maintain cell homeostasis.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"70 ","pages":"143-202"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)70006-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25063324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Structural and functional implications of sequence repeats in fibrous proteins. 纤维蛋白序列重复序列的结构和功能意义。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(05)70002-4
David A D Parry
{"title":"Structural and functional implications of sequence repeats in fibrous proteins.","authors":"David A D Parry","doi":"10.1016/S0065-3233(05)70002-4","DOIUrl":"https://doi.org/10.1016/S0065-3233(05)70002-4","url":null,"abstract":"<p><p>The amino acid sequences of increasingly large proteins have been determined in recent years, and it has become more and more apparent that within these sequences nature has employed only a finite number of structural?functional motifs. These may be strung along the sequence in tandem and, in some cases, several hundred times. In other instances, the positions of the motifs show little obvious order as regards to their relative linear arrangement within the sequence. The observed sequence repeats have been shown to vary in size over at least two orders of magnitude. It is shown here that the repeats can readily be classified on the basis of character, and five distinct groups have been identified. The first of these (Type A) represents those motifs that are fixed in length and conserved absolutely in sequence (>99%); the second (Type B) includes motifs that are also fixed in length, but where absolute sequence conservation occurs only in some positions of the repeat. The third category (Type C) contains fixed length motifs, but the character of only some of the positions in the motif is maintained. The fourth group (Type D) includes motifs that have nonintegral lengths. The fifth class (Type E) contains motifs, often displaying some variations in their lengths even within a single species, which maintain a discrete structural form related directly to their function. Examples are presented for each category of repeat, and these are drawn almost exclusively from the fibrous proteins and those proteins that are normally associated with them in vivo.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"70 ","pages":"11-35"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)70002-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25063920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
The structure of alpha-helical coiled coils. 螺旋线圈的结构。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(05)70003-6
Andrei N Lupas, Markus Gruber
{"title":"The structure of alpha-helical coiled coils.","authors":"Andrei N Lupas,&nbsp;Markus Gruber","doi":"10.1016/S0065-3233(05)70003-6","DOIUrl":"https://doi.org/10.1016/S0065-3233(05)70003-6","url":null,"abstract":"<p><p>alpha-Helical coiled coils are versatile protein domains, supporting a wide range of biological functions. Their fold is probably better understood than that of any other protein; indeed, uniquely among folds, their structure can be computed from a set of parametric equations. Here, we review the principles of coiled-coil structure, the determinants of their folding and stability, and the diversity of structural forms they assume.</p>","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"70 ","pages":"37-78"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(05)70003-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25063921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 561
The molecular mechanism of muscle contraction. 肌肉收缩的分子机制。
Advances in Protein Chemistry Pub Date : 2005-01-01 DOI: 10.1016/S0065-3233(04)71005-0
Michael A Geeves, Kenneth C Holmes
{"title":"The molecular mechanism of muscle contraction.","authors":"Michael A Geeves,&nbsp;Kenneth C Holmes","doi":"10.1016/S0065-3233(04)71005-0","DOIUrl":"https://doi.org/10.1016/S0065-3233(04)71005-0","url":null,"abstract":"","PeriodicalId":51216,"journal":{"name":"Advances in Protein Chemistry","volume":"71 ","pages":"161-93"},"PeriodicalIF":0.0,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0065-3233(04)71005-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25641962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 361
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信