{"title":"An $$L^1$$-theory for a nonlinear temporal periodic problem involving p(x)-growth structure with a strong dependence on gradients","authors":"Abderrahim Charkaoui, Nour Eddine Alaa","doi":"10.1007/s00028-023-00924-9","DOIUrl":"https://doi.org/10.1007/s00028-023-00924-9","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large time behavior of signed fractional porous media equations on bounded domains","authors":"Giovanni Franzina, Bruno Volzone","doi":"10.1007/s00028-023-00920-z","DOIUrl":"https://doi.org/10.1007/s00028-023-00920-z","url":null,"abstract":"Abstract Following the methodology of Brasco (Adv Math 394:108029, 2022), we study the long-time behavior for the signed fractional porous medium equation in open bounded sets with smooth boundary. Homogeneous exterior Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution, once suitably rescaled, converges to a nontrivial constant sign solution of a sublinear fractional Lane–Emden equation. Furthermore, we give a nonlocal sufficient energetic criterion on the initial datum, which is important to identify the exact limit profile, namely the positive solution or the negative one.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Willmore flow of Hopf-tori in the 3-sphere","authors":"Ruben Jakob","doi":"10.1007/s00028-023-00923-w","DOIUrl":"https://doi.org/10.1007/s00028-023-00923-w","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"140 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136157601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stefano Pagliarani, Giacomo Lucertini, Andrea Pascucci
{"title":"Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients","authors":"Stefano Pagliarani, Giacomo Lucertini, Andrea Pascucci","doi":"10.1007/s00028-023-00916-9","DOIUrl":"https://doi.org/10.1007/s00028-023-00916-9","url":null,"abstract":"Abstract We consider a class of degenerate equations in non-divergence form satisfying a parabolic Hörmander condition, with coefficients that are measurable in time and Hölder continuous in the space variables. By utilizing a generalized notion of strong solution, we establish the existence of a fundamental solution and its optimal Hölder regularity, as well as Gaussian estimates. These results are key to study the backward Kolmogorov equations associated to a class of Langevin diffusions.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical exponents for the p-Laplace heat equations with combined nonlinearities","authors":"Torebek, Berikbol T.","doi":"10.1007/s00028-023-00922-x","DOIUrl":"https://doi.org/10.1007/s00028-023-00922-x","url":null,"abstract":"This paper studies the large-time behavior of solutions to the quasilinear inhomogeneous parabolic equation with combined nonlinearities. This equation is a natural extension of the heat equations with combined nonlinearities considered by Jleli-Samet-Souplet (Proc AMS, 2020). Firstly, we focus on an interesting phenomenon of discontinuity of the critical exponents. In particular, we will fill the gap in the results of Jleli-Samet-Souplet for the critical case. We are also interested in the influence of the forcing term on the critical behavior of the considered problem, so we will define another critical exponent depending on the forcing term.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ophélie Cuvillier, Francesco Fanelli, Elena Salguero
{"title":"Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces","authors":"Ophélie Cuvillier, Francesco Fanelli, Elena Salguero","doi":"10.1007/s00028-023-00914-x","DOIUrl":"https://doi.org/10.1007/s00028-023-00914-x","url":null,"abstract":"In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence in a periodic domain $$mathbb {T}^d$$ , for space dimensions $$d=2,3$$ . We admit the average turbulent kinetic energy k to vanish in part of the domain, i.e. we consider the case $$k ge 0$$ ; in this situation, the parabolic structure of the equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces $$H^s$$ , for any $$s>1+d/2$$ . We expect this regularity to be optimal, due to the degeneracy of the system when $$k approx 0$$ . We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions. The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus, together with a precise commutator decomposition of the nonlinear terms involved in the computations.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135220046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Doubly nonlinear equations for the 1-Laplacian","authors":"J. M. Mazón, A. Molino, J. Toledo","doi":"10.1007/s00028-023-00917-8","DOIUrl":"https://doi.org/10.1007/s00028-023-00917-8","url":null,"abstract":"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$begin{aligned} frac{partial v}{partial t} - Delta _1 u ni 0 hbox { in } (0, infty ) times Omega , quad vin gamma (u), end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(Omega )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${mathbb {R}}^N$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${mathbb {R}}times {mathbb {R}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frequency theorem and inertial manifolds for neutral delay equations","authors":"Mikhail Anikushin","doi":"10.1007/s00028-023-00915-w","DOIUrl":"https://doi.org/10.1007/s00028-023-00915-w","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques","authors":"Ning-An Lai, Nico Michele Schiavone","doi":"10.1007/s00028-023-00918-7","DOIUrl":"https://doi.org/10.1007/s00028-023-00918-7","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}