Journal of Evolution Equations最新文献

筛选
英文 中文
An $$L^1$$-theory for a nonlinear temporal periodic problem involving p(x)-growth structure with a strong dependence on gradients 涉及p(x)生长结构的非线性时间周期问题的$$L^1$$ -理论
3区 数学
Journal of Evolution Equations Pub Date : 2023-11-06 DOI: 10.1007/s00028-023-00924-9
Abderrahim Charkaoui, Nour Eddine Alaa
{"title":"An $$L^1$$-theory for a nonlinear temporal periodic problem involving p(x)-growth structure with a strong dependence on gradients","authors":"Abderrahim Charkaoui, Nour Eddine Alaa","doi":"10.1007/s00028-023-00924-9","DOIUrl":"https://doi.org/10.1007/s00028-023-00924-9","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large time behavior of signed fractional porous media equations on bounded domains 有界域上有符号分数多孔介质方程的大时间行为
3区 数学
Journal of Evolution Equations Pub Date : 2023-11-06 DOI: 10.1007/s00028-023-00920-z
Giovanni Franzina, Bruno Volzone
{"title":"Large time behavior of signed fractional porous media equations on bounded domains","authors":"Giovanni Franzina, Bruno Volzone","doi":"10.1007/s00028-023-00920-z","DOIUrl":"https://doi.org/10.1007/s00028-023-00920-z","url":null,"abstract":"Abstract Following the methodology of Brasco (Adv Math 394:108029, 2022), we study the long-time behavior for the signed fractional porous medium equation in open bounded sets with smooth boundary. Homogeneous exterior Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution, once suitably rescaled, converges to a nontrivial constant sign solution of a sublinear fractional Lane–Emden equation. Furthermore, we give a nonlocal sufficient energetic criterion on the initial datum, which is important to identify the exact limit profile, namely the positive solution or the negative one.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Willmore flow of Hopf-tori in the 3-sphere Hopf-tori在3球中的Willmore流
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-28 DOI: 10.1007/s00028-023-00923-w
Ruben Jakob
{"title":"The Willmore flow of Hopf-tori in the 3-sphere","authors":"Ruben Jakob","doi":"10.1007/s00028-023-00923-w","DOIUrl":"https://doi.org/10.1007/s00028-023-00923-w","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"140 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136157601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients 具有粗糙时间系数的非散度形式退化Kolmogorov方程的最优正则性
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-26 DOI: 10.1007/s00028-023-00916-9
Stefano Pagliarani, Giacomo Lucertini, Andrea Pascucci
{"title":"Optimal regularity for degenerate Kolmogorov equations in non-divergence form with rough-in-time coefficients","authors":"Stefano Pagliarani, Giacomo Lucertini, Andrea Pascucci","doi":"10.1007/s00028-023-00916-9","DOIUrl":"https://doi.org/10.1007/s00028-023-00916-9","url":null,"abstract":"Abstract We consider a class of degenerate equations in non-divergence form satisfying a parabolic Hörmander condition, with coefficients that are measurable in time and Hölder continuous in the space variables. By utilizing a generalized notion of strong solution, we establish the existence of a fundamental solution and its optimal Hölder regularity, as well as Gaussian estimates. These results are key to study the backward Kolmogorov equations associated to a class of Langevin diffusions.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"75 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136381954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Critical exponents for the p-Laplace heat equations with combined nonlinearities 组合非线性p-拉普拉斯热方程的临界指数
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-26 DOI: 10.1007/s00028-023-00922-x
Torebek, Berikbol T.
{"title":"Critical exponents for the p-Laplace heat equations with combined nonlinearities","authors":"Torebek, Berikbol T.","doi":"10.1007/s00028-023-00922-x","DOIUrl":"https://doi.org/10.1007/s00028-023-00922-x","url":null,"abstract":"This paper studies the large-time behavior of solutions to the quasilinear inhomogeneous parabolic equation with combined nonlinearities. This equation is a natural extension of the heat equations with combined nonlinearities considered by Jleli-Samet-Souplet (Proc AMS, 2020). Firstly, we focus on an interesting phenomenon of discontinuity of the critical exponents. In particular, we will fill the gap in the results of Jleli-Samet-Souplet for the critical case. We are also interested in the influence of the forcing term on the critical behavior of the considered problem, so we will define another critical exponent depending on the forcing term.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136377036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Moore Gibson Thompson thermoelastic plates: comparisons 摩尔吉布森汤普森热弹性板:比较
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-26 DOI: 10.1007/s00028-023-00921-y
Hugo D. Fernández Sare, Ramón Quintanilla
{"title":"Moore Gibson Thompson thermoelastic plates: comparisons","authors":"Hugo D. Fernández Sare, Ramón Quintanilla","doi":"10.1007/s00028-023-00921-y","DOIUrl":"https://doi.org/10.1007/s00028-023-00921-y","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"114 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134908289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces 最优Sobolev空间湍流的Kolmogorov双方程模型的适定性
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-24 DOI: 10.1007/s00028-023-00914-x
Ophélie Cuvillier, Francesco Fanelli, Elena Salguero
{"title":"Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces","authors":"Ophélie Cuvillier, Francesco Fanelli, Elena Salguero","doi":"10.1007/s00028-023-00914-x","DOIUrl":"https://doi.org/10.1007/s00028-023-00914-x","url":null,"abstract":"In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence in a periodic domain $$mathbb {T}^d$$ , for space dimensions $$d=2,3$$ . We admit the average turbulent kinetic energy k to vanish in part of the domain, i.e. we consider the case $$k ge 0$$ ; in this situation, the parabolic structure of the equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces $$H^s$$ , for any $$s>1+d/2$$ . We expect this regularity to be optimal, due to the degeneracy of the system when $$k approx 0$$ . We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions. The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus, together with a precise commutator decomposition of the nonlinear terms involved in the computations.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"106 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135220046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Doubly nonlinear equations for the 1-Laplacian 1-拉普拉斯方程的双重非线性方程
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-17 DOI: 10.1007/s00028-023-00917-8
J. M. Mazón, A. Molino, J. Toledo
{"title":"Doubly nonlinear equations for the 1-Laplacian","authors":"J. M. Mazón, A. Molino, J. Toledo","doi":"10.1007/s00028-023-00917-8","DOIUrl":"https://doi.org/10.1007/s00028-023-00917-8","url":null,"abstract":"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$begin{aligned} frac{partial v}{partial t} - Delta _1 u ni 0 hbox { in } (0, infty ) times Omega , quad vin gamma (u), end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(Omega )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${mathbb {R}}^N$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${mathbb {R}}times {mathbb {R}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"22 3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135994235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency theorem and inertial manifolds for neutral delay equations 中立型延迟方程的频率定理与惯性流形
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-14 DOI: 10.1007/s00028-023-00915-w
Mikhail Anikushin
{"title":"Frequency theorem and inertial manifolds for neutral delay equations","authors":"Mikhail Anikushin","doi":"10.1007/s00028-023-00915-w","DOIUrl":"https://doi.org/10.1007/s00028-023-00915-w","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135800300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques 用Orlicz空间技术估计带阻尼的可压缩欧拉方程的寿命
3区 数学
Journal of Evolution Equations Pub Date : 2023-10-06 DOI: 10.1007/s00028-023-00918-7
Ning-An Lai, Nico Michele Schiavone
{"title":"Lifespan estimates for the compressible Euler equations with damping via Orlicz spaces techniques","authors":"Ning-An Lai, Nico Michele Schiavone","doi":"10.1007/s00028-023-00918-7","DOIUrl":"https://doi.org/10.1007/s00028-023-00918-7","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135352549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信