1-拉普拉斯方程的双重非线性方程

IF 1.1 3区 数学 Q1 MATHEMATICS
J. M. Mazón, A. Molino, J. Toledo
{"title":"1-拉普拉斯方程的双重非线性方程","authors":"J. M. Mazón, A. Molino, J. Toledo","doi":"10.1007/s00028-023-00917-8","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\\begin{aligned} \\frac{\\partial v}{\\partial t} - \\Delta _1 u \\ni 0 \\hbox { in } (0, \\infty ) \\times \\Omega , \\quad v\\in \\gamma (u), \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(\\Omega )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${\\mathbb {R}}^N$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${\\mathbb {R}}\\times {\\mathbb {R}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly nonlinear equations for the 1-Laplacian\",\"authors\":\"J. M. Mazón, A. Molino, J. Toledo\",\"doi\":\"10.1007/s00028-023-00917-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\\\\begin{aligned} \\\\frac{\\\\partial v}{\\\\partial t} - \\\\Delta _1 u \\\\ni 0 \\\\hbox { in } (0, \\\\infty ) \\\\times \\\\Omega , \\\\quad v\\\\in \\\\gamma (u), \\\\end{aligned}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(\\\\Omega )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\\\Omega $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${\\\\mathbb {R}}^N$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$\\\\gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${\\\\mathbb {R}}\\\\times {\\\\mathbb {R}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$\\\\gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00917-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00028-023-00917-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究一类双非线性1-拉普拉斯方程的Neumann问题。 $$\begin{aligned} \frac{\partial v}{\partial t} - \Delta _1 u \ni 0 \hbox { in } (0, \infty ) \times \Omega , \quad v\in \gamma (u), \end{aligned}$$ ∂v∂t - Δ 1 u∈0 in(0,∞)× Ω, v∈γ (u),初始数据in $$L^1(\Omega )$$ l1 (Ω),其中 $$\Omega $$ 中的有界光滑域Ω $${\mathbb {R}}^N$$ R N和 $$\gamma $$ γ是中的极大单调图 $${\mathbb {R}}\times {\mathbb {R}}$$ R × R。我们在图上的某些假设下证明了这一点 $$\gamma $$ γ,解存在唯一性。此外,我们证明了这些解与总变分流的诺伊曼问题的解是一致的。我们证明这些假设是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Doubly nonlinear equations for the 1-Laplacian
Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\begin{aligned} \frac{\partial v}{\partial t} - \Delta _1 u \ni 0 \hbox { in } (0, \infty ) \times \Omega , \quad v\in \gamma (u), \end{aligned}$$ v t - Δ 1 u 0 in ( 0 , ) × Ω , v γ ( u ) , and initial data in $$L^1(\Omega )$$ L 1 ( Ω ) , where $$\Omega $$ Ω is a bounded smooth domain in $${\mathbb {R}}^N$$ R N and $$\gamma $$ γ is a maximal monotone graph in $${\mathbb {R}}\times {\mathbb {R}}$$ R × R . We prove that, under certain assumptions on the graph $$\gamma $$ γ , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信