{"title":"1-拉普拉斯方程的双重非线性方程","authors":"J. M. Mazón, A. Molino, J. Toledo","doi":"10.1007/s00028-023-00917-8","DOIUrl":null,"url":null,"abstract":"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\\begin{aligned} \\frac{\\partial v}{\\partial t} - \\Delta _1 u \\ni 0 \\hbox { in } (0, \\infty ) \\times \\Omega , \\quad v\\in \\gamma (u), \\end{aligned}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(\\Omega )$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\Omega $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${\\mathbb {R}}^N$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${\\mathbb {R}}\\times {\\mathbb {R}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doubly nonlinear equations for the 1-Laplacian\",\"authors\":\"J. M. Mazón, A. Molino, J. Toledo\",\"doi\":\"10.1007/s00028-023-00917-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\\\\begin{aligned} \\\\frac{\\\\partial v}{\\\\partial t} - \\\\Delta _1 u \\\\ni 0 \\\\hbox { in } (0, \\\\infty ) \\\\times \\\\Omega , \\\\quad v\\\\in \\\\gamma (u), \\\\end{aligned}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mtable> <mml:mtr> <mml:mtd> <mml:mrow> <mml:mfrac> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>t</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>Δ</mml:mi> <mml:mn>1</mml:mn> </mml:msub> <mml:mi>u</mml:mi> <mml:mo>∋</mml:mo> <mml:mn>0</mml:mn> <mml:mspace /> <mml:mtext>in</mml:mtext> <mml:mspace /> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>∞</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>×</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>,</mml:mo> <mml:mspace /> <mml:mi>v</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> </mml:mtd> </mml:mtr> </mml:mtable> </mml:mrow> </mml:math> and initial data in $$L^1(\\\\Omega )$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>1</mml:mn> </mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>Ω</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , where $$\\\\Omega $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>Ω</mml:mi> </mml:math> is a bounded smooth domain in $${\\\\mathbb {R}}^N$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> </mml:math> and $$\\\\gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>γ</mml:mi> </mml:math> is a maximal monotone graph in $${\\\\mathbb {R}}\\\\times {\\\\mathbb {R}}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>R</mml:mi> <mml:mo>×</mml:mo> <mml:mi>R</mml:mi> </mml:mrow> </mml:math> . We prove that, under certain assumptions on the graph $$\\\\gamma $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mi>γ</mml:mi> </mml:math> , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00917-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00028-023-00917-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Abstract This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for the 1-Laplacian, $$\begin{aligned} \frac{\partial v}{\partial t} - \Delta _1 u \ni 0 \hbox { in } (0, \infty ) \times \Omega , \quad v\in \gamma (u), \end{aligned}$$ ∂v∂t-Δ1u∋0in(0,∞)×Ω,v∈γ(u), and initial data in $$L^1(\Omega )$$ L1(Ω) , where $$\Omega $$ Ω is a bounded smooth domain in $${\mathbb {R}}^N$$ RN and $$\gamma $$ γ is a maximal monotone graph in $${\mathbb {R}}\times {\mathbb {R}}$$ R×R . We prove that, under certain assumptions on the graph $$\gamma $$ γ , there is existence and uniqueness of solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the total variational flow. We show that such assumptions are necessary.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators