最优Sobolev空间湍流的Kolmogorov双方程模型的适定性

IF 1.1 3区 数学 Q1 MATHEMATICS
Ophélie Cuvillier, Francesco Fanelli, Elena Salguero
{"title":"最优Sobolev空间湍流的Kolmogorov双方程模型的适定性","authors":"Ophélie Cuvillier, Francesco Fanelli, Elena Salguero","doi":"10.1007/s00028-023-00914-x","DOIUrl":null,"url":null,"abstract":"In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence in a periodic domain $$\\mathbb {T}^d$$ , for space dimensions $$d=2,3$$ . We admit the average turbulent kinetic energy k to vanish in part of the domain, i.e. we consider the case $$k \\ge 0$$ ; in this situation, the parabolic structure of the equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces $$H^s$$ , for any $$s>1+d/2$$ . We expect this regularity to be optimal, due to the degeneracy of the system when $$k \\approx 0$$ . We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions. The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus, together with a precise commutator decomposition of the nonlinear terms involved in the computations.","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":"106 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces\",\"authors\":\"Ophélie Cuvillier, Francesco Fanelli, Elena Salguero\",\"doi\":\"10.1007/s00028-023-00914-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence in a periodic domain $$\\\\mathbb {T}^d$$ , for space dimensions $$d=2,3$$ . We admit the average turbulent kinetic energy k to vanish in part of the domain, i.e. we consider the case $$k \\\\ge 0$$ ; in this situation, the parabolic structure of the equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces $$H^s$$ , for any $$s>1+d/2$$ . We expect this regularity to be optimal, due to the degeneracy of the system when $$k \\\\approx 0$$ . We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions. The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus, together with a precise commutator decomposition of the nonlinear terms involved in the computations.\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00914-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00028-023-00914-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了周期域$$\mathbb {T}^d$$中空间维为$$d=2,3$$的Kolmogorov湍流双方程模型的适定性。我们承认平均湍流动能k在部分区域内消失,即我们考虑$$k \ge 0$$;在这种情况下,方程的抛物线结构变得简并。对于该系统,我们证明了Sobolev空间$$H^s$$中对于任意$$s>1+d/2$$的局部适定性结果。我们期望这个规则是最优的,因为当$$k \approx 0$$。我们还证明了一个延拓准则,并给出了解的寿命的下界。结果的证明是基于Littlewood-Paley分析和环面上的准微分演算,以及计算中涉及的非线性项的精确换易子分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Well-posedness of the Kolmogorov two-equation model of turbulence in optimal Sobolev spaces
In this paper, we study the well-posedness of the Kolmogorov two-equation model of turbulence in a periodic domain $$\mathbb {T}^d$$ , for space dimensions $$d=2,3$$ . We admit the average turbulent kinetic energy k to vanish in part of the domain, i.e. we consider the case $$k \ge 0$$ ; in this situation, the parabolic structure of the equations becomes degenerate. For this system, we prove a local well-posedness result in Sobolev spaces $$H^s$$ , for any $$s>1+d/2$$ . We expect this regularity to be optimal, due to the degeneracy of the system when $$k \approx 0$$ . We also prove a continuation criterion and provide a lower bound for the lifespan of the solutions. The proof of the results is based on Littlewood-Paley analysis and paradifferential calculus on the torus, together with a precise commutator decomposition of the nonlinear terms involved in the computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信