{"title":"Bird Phylogenetic Diversity Increases With Temperature Worldwide","authors":"Pelayo Barrios, Carlos Martinez-Nuñez","doi":"10.1111/ddi.13930","DOIUrl":"https://doi.org/10.1111/ddi.13930","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Temperature significantly influences the composition and structure of biotic communities at large scales. While its role in shaping taxonomic diversity is well-documented, its relationship with other facets of biodiversity, like phylogenetic diversity, remains poorly known. Understanding how and to which extent temperature contributes to global patterns of phylogenetic diversity compared to other biodiversity-structuring factors is crucial for comprehending how bird assemblages are structured worldwide, predicting their response to global-change drivers and supporting conservation policies focused on preserving bird genetic diversity and evolutionary history.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Worldwide.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analyse the role of temperature in predicting bird regional phylogenetic richness (PD) and divergence (MPD) worldwide, before and after controlling for the effect of species richness (SR). We also assess the shape of this relationship in different biogeographic realms and compare its explanatory power with other key biodiversity-structuring factors such as elevation, human impact index, net primary productivity and land use diversity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Our findings underscore the high significance and consistency of temperature as a key predictor positively associated with bird PD and MPD across the six main biogeographic realms, even after accounting for SR and latitude, suggesting that temperature modulates the intrinsic capacity of environments to support a diverse array of lineages. In addition, PD and MPD tended to increase at low elevations, but the human-impact index did not effectively predict bird phylogenetic diversity at this scale. Furthermore, high PD was linked to regions with high primary productivity and high land-use diversity, although both of these relationships were strongly mediated by SR.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This study unveils the key role of temperature in explaining bird phylogenetic diversity worldwide over other key biodiversity-structuring factors and points to the profound implications that climate change will have on the amount of evolutionary history held in bird assemblages, beyond species extinctions or range shifts alone.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 11","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13930","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Xu, Ferenc Jordán, Mingliang Zhou, Xumeng Huo, Yanpeng Cai, Syed Aziz Ur Rehman, Jun Sun
{"title":"Global Variability of Degree Distribution in Marine Food Webs","authors":"Yan Xu, Ferenc Jordán, Mingliang Zhou, Xumeng Huo, Yanpeng Cai, Syed Aziz Ur Rehman, Jun Sun","doi":"10.1111/ddi.13927","DOIUrl":"https://doi.org/10.1111/ddi.13927","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>In complex networks, the degree distribution varies and provides an insight into the general structure of the system. For example, it may show scale-free characteristics of the network, indicating higher vulnerability against non-random disturbances. However, investigating its spatio-temporal variability, degree distribution in marine food webs remains an unresolved issue. In this paper, we focus on describing the global variability of degree distribution in marine food webs.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We studied 105 marine food webs. By Kolmogorov–Smirnov test, and kernel density estimation, we determined the degree distribution of each food web, described its spatio-temporal pattern and quantified the correlation between relevant parameters as a function of the scale-free property of the degree distribution.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Marine food webs around the globe did not strictly exhibit scale-free characteristics in most regions, and only below 5% of the food webs entered the “strongest fit” level of the scale-free network. We also find food webs in the polar regions indicate relatively high goodness-of-fit to scale-free networks. The upwelling ecosystem related to ocean currents is prone to form a scale-free web, which exhibits periodic scale-free characteristics. The ecosystem types with relatively ‘low fit’ levels were mainly concentrated in the ecosystems heavily influenced by human activities.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>This research will enhance the research in terms of (a) classifying degree distribution in marine food webs; (b) revealing the variability in the spatial pattern of particular distributions, for example, the scale-free characteristics and (c) exploring the distribution of in-degree in space, quantifying the proportion of generalist and specialist species, as a potential indicator of adaptive potential of ecosystems. This research contributes to our understanding of the scale-free features of marine food webs globally. It also offers a real systems-based conservation approach to assess the spatial heterogeneity of the structural vulnerability of marine ecosystems.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 11","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13927","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James K. McCarthy, Sarah J. Richardson, Insu Jo, Susan K. Wiser, Tomás A. Easdale, James D. Shepherd, Peter J. Bellingham
{"title":"A Functional Assessment of Community Vulnerability to the Loss of Myrtaceae From Myrtle Rust","authors":"James K. McCarthy, Sarah J. Richardson, Insu Jo, Susan K. Wiser, Tomás A. Easdale, James D. Shepherd, Peter J. Bellingham","doi":"10.1111/ddi.13928","DOIUrl":"https://doi.org/10.1111/ddi.13928","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Woody ecosystems provide critical ecosystem functions and services but are increasingly threatened as invasive pathogens spread globally. Myrtle rust, caused by <i>Austropuccinia psidii</i>, arrived in New Zealand in 2017 and infects at least 12 of 18 species in the susceptible Myrtaceae plant family. Among these are species of structural, successional and cultural importance. We aim to assess whether the functional consequences of Myrtaceae loss could be mitigated if co-occurring species with shared functional attributes are able to replace them.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>New Zealand (but with concepts and methodologies that apply globally).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>Using a nationwide forest and shrubland plot data set, we assessed community vulnerability to the loss of Myrtaceae species by analysing proportional changes in average trait values when they are absent and produced spatial predictions indicating where species loss might have the greatest impact on community functionality. We then assessed whether compensatory infilling by co-occurring species would mediate community vulnerability.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Forests and shrublands containing <i>Kunzea ericoides</i> and <i>Leptospermum scoparium</i> are highly vulnerable to their loss. Areas most vulnerable overall are the central and south-eastern North Island, north-eastern South Island and Stewart Island. For all species, compensatory infilling moderated the impact of their loss. However, if co-occurring Myrtaceae were unable to respond, possibly if they were also infected, community vulnerability almost always increased because infilling species had different functional attributes, compounding the functional impact.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Early successional woody plant communities and Myrtaceae-dominated old-growth forests are at most risk. Our spatial assessment of species-level functional impacts from myrtle rust will facilitate better-informed landscape-level responses. Management actions and monitoring can now be targeted to areas and communities at greatest risk of losing ecosystem-level processes.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 11","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13928","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identifying Gaps in the Protection of Mediterranean Seagrass Habitats Using Network-Based Prioritisation","authors":"Damiano Baldan, Yohann Chauvier-Mendes, Fabrizio Gianni, Gianpiero Cossarini, Vinko Bandelj","doi":"10.1111/ddi.13922","DOIUrl":"https://doi.org/10.1111/ddi.13922","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Seagrass meadows represent a key marine ecosystem owing to the significant biodiversity they host. Protection actions are often implemented without considering connectivity between habitats. In this article, we project and prioritise Mediterranean seagrass habitats (<i>Posidonia oceanica</i> and <i>Cymodocea nodosa</i>) based on their potential as sources/retention and stepping stones for dispersal propagules of the associated biotic communities. We use this information to identify gaps in the protection of highly ranked habitats.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Mediterranean Sea.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We related seagrass observations with marine environmental predictors to run species distribution models and infer the distribution of Mediterranean seagrasses. We then used a network-based approach (CONEFOR) to rank patches of seagrass suitable areas based on their contribution to the seascape in terms of patch area, potential as source/retention of propagules and stepping stone. Finally, by overlaying our ranking with the spatial distribution of marine protected areas (MPAs), we identified potential gaps in the protection of important seagrass habitats across the Mediterranean and its basins.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Most of the identified patches of seagrass suitable areas are not included in MPAs, only reaching a maximum protection coverage of ~50% in the Northwestern Mediterranean. Relatively few patches contribute disproportionately to connectivity, but top-ranked habitat patches are not included within the existing MPAs network, both at the Mediterranean scale and for most basins. The largest gaps for the source/sink role are in the Aegean and Ionian Sea, and largest gaps for the stepping stone role are in the Adriatic, Ionian and Tyrrhenian Sea.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our results suggest that the current MPAs network fails to protect highly relevant patches of seagrass suitable areas in most of the Mediterranean basins. However, this gap could be filled by a few well-placed MPAs. Overall, we provide novel insights for the identification of key habitats and planning novel coastal MPAs in the region.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 11","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13922","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142560449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xin Gao, Zhuoen Liu, Richard T. Corlett, Zhigang Jiang, Alice Hughes, Keping Ma, Jens-Christian Svenning, Gang Feng
{"title":"Divergent Importance and Geographic Patterns in Threats to Birds and Mammals in China","authors":"Xin Gao, Zhuoen Liu, Richard T. Corlett, Zhigang Jiang, Alice Hughes, Keping Ma, Jens-Christian Svenning, Gang Feng","doi":"10.1111/ddi.13925","DOIUrl":"https://doi.org/10.1111/ddi.13925","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Wildlife populations are continuing to decrease worldwide. Understanding the ranking and distribution of drivers of species declines is crucial to enable targeted actions to counteract major threats. However, few studies have assessed the relative importance and geographic distribution of threats to biodiversity in China, even for high-profile groups such as birds and mammals. Therefore, this study aims to rank and map the distribution of threat to birds and mammals in China, which could provide novel insight into biodiversity conservation in China.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>China.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>A database of different threats for 147 threatened bird species and 176 threatened terrestrial mammal species was obtained from China's Red List of Biodiversity published in 2021. We collated information on the distribution and threat categories for birds and mammals in China, aiming to classify, rank and map threats. We used Bray–Curtis dissimilarity index to examine the correlations of threats occurring simultaneously, and compared the distribution of habitat of threatened birds and mammals. In addition, we conducted threat ranking analyses of threatened birds and mammals between different orders and traits (body mass and clutch/litter sizes).</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The results showed that the most common threats to birds were habitat loss, hunting, human disturbance, agriculture, pollution and logging, while the most common threats to mammals were hunting, agriculture, logging, habitat loss, human disturbance and livestock farming or ranching. These threats showed different geographic patterns, and some threats frequently co-occur as threat syndromes. Forests were the primary habitat for most threatened species, and orders formed by larger species with small clutch or litter sizes were more likely to be threatened.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>We highlight the most common threats and key areas for conservation. Furthermore, focusing on clusters of co-occurring threats may be the most effective way to aid recovery of threatened species, and targeted actions are needed to counter ongoing population declines in many groups. These actions should not be limited to the protection of regions where species are at risk of multiple significant threats, but should also include the maintenance and restoration of native forests and st","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"31 2","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13925","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143490006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cover page","authors":"","doi":"10.1111/ddi.13873","DOIUrl":"https://doi.org/10.1111/ddi.13873","url":null,"abstract":"<p>The cover image relates to the Research Article https://doi.org/10.1111/ddi.13902 “Contrasting patterns of spatial genetic structure in endangered southern damselfly (<i>Coenagrion mercuriale</i>) populations facing habitat fragmentation and urbanisation” by Lévêque et al. Southern Damselflies mating in northern France. Photo credit: Agathe Lévêque.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 10","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13873","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142430234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Can we leverage botanical gardens to study global plant functional diversity?","authors":"Giacomo Puglielli","doi":"10.1111/ddi.13915","DOIUrl":"https://doi.org/10.1111/ddi.13915","url":null,"abstract":"<p>Biodiversity is a multidimensional concept spanning the diversity of organismal form and function (functional diversity) together with taxonomic and genetic diversity. In the case of plants, botanical gardens have historically strived to preserve taxonomic diversity with a global scope. However, their success in preserving global functional diversity lacks testing. Given that living collections in botanical gardens span major global vegetation types and evolutionary histories, it is reasonable to expect that a species assemblage in a botanical garden is a representative random sample of global vegetation. In such a case, botanical gardens should contain global functional diversity. Testing for this could elect botanical gardens as laboratories for studying global plant functional diversity, providing a much-needed alternative in the way we study global patterns of this diversity facet.</p>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael E. Byrne, Heidi Dewar, Jeremy J. Vaudo, Bradley M. Wetherbee, Mahmood S. Shivji
{"title":"You Shall Not Pass: The Pacific Oxygen Minimum Zone Creates a Boundary to Shortfin Mako Shark Distribution in the Eastern North Pacific Ocean","authors":"Michael E. Byrne, Heidi Dewar, Jeremy J. Vaudo, Bradley M. Wetherbee, Mahmood S. Shivji","doi":"10.1111/ddi.13924","DOIUrl":"10.1111/ddi.13924","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>Shoaling of large oxygen minimum zones (OMZs) that form along eastern margins of the world's oceans can reduce habitat availability for some pelagic fishes. Our aim was to test the hypothesis that habitat compression caused by shoaling of the Pacific OMZ in tropical regions creates a boundary to the southern distribution of shortfin mako sharks (<i>Isurus oxyrinchus</i>) in the Eastern North Pacific Ocean.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Eastern North Pacific and Western North Atlantic oceans.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We compared environmental conditions between areas used by satellite-tagged mako sharks in the Eastern North Pacific, encompassing the world's largest OMZ, to those used in the Western North Atlantic where no OMZ is present. In the Pacific we quantified the effects of temperature and dissolved oxygen (DO) on depth use and tested if sharks spent less time in areas with strong habitat compression over the OMZ than expected by chance.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>The southern distribution of sharks in the Pacific corresponded with the apex of OMZ shoaling in the North Equatorial Current. Sharks in the Atlantic occupied areas with warm surface temperatures (≥ 26°C) more often than the Pacific, and waters with these temperatures in the Atlantic had greater DO at depth. Sharks in the Pacific reduced time near the surface in warm temperatures and consistently avoided depths with low DO and spent less time in areas with strong habitat compression than expected by chance.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>The combination of warm surface temperatures and shoaling of the OMZ creates a soft boundary to mako shark movements in the Eastern North Pacific Ocean. The expected expansion of OMZs due to climate change could have considerable impact on future distribution of mako sharks and other pelagic fish. As such, development of species distribution models to predict the effects of climate change on pelagic fish distributions should incorporate oxygen availability.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13924","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrew M. Liebhold, Rebecca M. Turner, Charles R. Bartlett, Cleo Bertelsmeier, Rachael E. Blake, Eckehard G. Brockerhoff, Charlotte E. Causton, Janis N. Matsunaga, Stuart H. McKamey, Helen F. Nahrung, Christopher L. Owen, Deepa S. Pureswaran, Alain Roques, Scott A. Schneider, Allen F. Sanborn, Takehiko Yamanaka
{"title":"Why so many Hemiptera invasions?","authors":"Andrew M. Liebhold, Rebecca M. Turner, Charles R. Bartlett, Cleo Bertelsmeier, Rachael E. Blake, Eckehard G. Brockerhoff, Charlotte E. Causton, Janis N. Matsunaga, Stuart H. McKamey, Helen F. Nahrung, Christopher L. Owen, Deepa S. Pureswaran, Alain Roques, Scott A. Schneider, Allen F. Sanborn, Takehiko Yamanaka","doi":"10.1111/ddi.13911","DOIUrl":"10.1111/ddi.13911","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The Hemiptera is the fifth-largest insect order but among non-native insect species is approximately tied with the Coleoptera as the most species-rich insect order (Hemiptera comprise 20% more species than in world fauna). This over-representation may result from high propagule pressure or from high species invasiveness. Here, we assess the reasons for over-representation in this group by analysing geographical, temporal and taxonomic variation in numbers of historical invasions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Global.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Method</h3>\u0000 \u0000 <p>We assembled lists of historical Hemiptera invasions in 12 world regions, countries or islands (Australia, Chile, Europe, New Zealand, North America, South Africa, South Korea, Japan and the Galapagos, Hawaiian, Okinawa and Ogasawara Islands) and border interception data from nine countries (Australia, Canada, European Union, United Kingdom, Hawaii, Japan, New Zealand, South Korea, USA mainland and South Africa). Using these data, we identified hemipteran superfamilies that are historically over-represented among established non-native species, and superfamilies that are over-represented among arrivals (proxied by interceptions). We also compared temporal patterns of establishments among hemipteran suborders and among regions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Across all regions, patterns of over- and under-representation were similar. The Aphidoidea, Coccoidea, Aleyrodoidea, Cimicoidea and Phylloxeroida were over-represented among non-native species. These same superfamilies were not consistently over-represented among intercepted species indicating that propagule pressure does not completely explain the tendency of some Hemiptera to be over-represented among invasions. Asexual reproduction is common in most over-represented superfamilies and this trait may be key to explaining high invasion success in these superfamilies.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>We conclude that both propagule pressure and species invasiveness are drivers of high invasion success in the Sternorrhyncha suborder (aphids, scales, whiteflies) and this group plays a major role in the exceptional invasion success of Hemiptera in general. The high historical rates of invasion by Sternorrhyncha species provide justification for biosecurity measure focusing on exclusion of this group.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13911","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Feng, Péter Takács, István Czeglédi, Tibor Erős
{"title":"Patterns and drivers in the functional diversity decomposition of invaded stream fish communities","authors":"Kai Feng, Péter Takács, István Czeglédi, Tibor Erős","doi":"10.1111/ddi.13914","DOIUrl":"10.1111/ddi.13914","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Aim</h3>\u0000 \u0000 <p>The assembly of real-world ecological communities in human-modified landscapes is influenced by a complex interplay of spatial, temporal, environmental and invasion gradients. However, understanding the relative importance of these drivers and their interactions in shaping functional assembly remains elusive. Our study aimed to investigate the relative influence of these drivers on the functional assembly of a stream fish metacommunity.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Location</h3>\u0000 \u0000 <p>Streams of the Lake Balaton catchment, Hungary.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We analysed a long-term (18-year) dataset of the stream fish metacommunity, focusing on changes in functional diversity (Q), redundancy (R) and species dominance (D). Ternary diagrams were utilized to decompose functional diversity into Q, R and D components and to visualize diversity patterns. Linear mixed-effect regression and separate structural equation models were employed to identify significant drivers of Q, R and D.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Native fish communities exhibited low functional diversity (Q) but high redundancy (R) and dominance (D), indicating functional convergence and dominance. Stream habitat size, network position and associated spatial, physical and chemical gradients emerged as consistently significant drivers of D and R. Changes in Q were additionally linked to non-native community properties and subtle shifts in land use and within-stream habitat characteristics.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main Conclusions</h3>\u0000 \u0000 <p>Our findings suggest that both environmental filtering and interspecies interactions, particularly trait similarity between invaders and natives shape functional assembly of stream fish metacommunities. Despite minimal temporal directional changes, environmental drivers predominantly influence long-term diversity patterns of native fish communities, overshadowing invasion effects. Our findings underscore the importance of considering both environmental filtering mechanisms and interspecies interactions in understanding functional assembly. Additionally, the joint application of diversity decomposition frameworks with predictive modelling provides comprehensive insight into patterns of functional diversity and assembly across ecological communities.</p>\u0000 </section>\u0000 </div>","PeriodicalId":51018,"journal":{"name":"Diversity and Distributions","volume":"30 12","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ddi.13914","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142212522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}