Collectanea Mathematica最新文献

筛选
英文 中文
Infinitely many positive energy solutions for semilinear Neumann equations with critical Sobolev exponent and concave-convex nonlinearity 具有临界Sobolev指数和凹凸非线性的半线性Neumann方程的无穷多正能量解
IF 1.1 2区 数学
Collectanea Mathematica Pub Date : 2023-11-29 DOI: 10.1007/s13348-023-00426-4
Rachid Echarghaoui, Rachid Sersif, Zakaria Zaimi
{"title":"Infinitely many positive energy solutions for semilinear Neumann equations with critical Sobolev exponent and concave-convex nonlinearity","authors":"Rachid Echarghaoui, Rachid Sersif, Zakaria Zaimi","doi":"10.1007/s13348-023-00426-4","DOIUrl":"https://doi.org/10.1007/s13348-023-00426-4","url":null,"abstract":"<p>The authors of Cao and Yan (J Differ Equ 251:1389–1414, 2011) have considered the following semilinear critical Neumann problem </p><span>$$begin{aligned} varvec{-Delta u=vert uvert ^{2^{*}-2} u+g(u) quad text{ in } Omega , quad frac{partial u}{partial nu }=0 quad text{ on } partial Omega ,} end{aligned}$$</span><p>where <span>(varvec{Omega })</span> is a bounded domain in <span>(varvec{mathbb {R}^{N}})</span> satisfying some geometric conditions, <span>(varvec{nu })</span> is the outward unit normal of <span>(varvec{partial Omega , 2^{*}:=frac{2 N}{N-2}})</span> and <span>(varvec{g(t):=mu vert tvert ^{p-2} t-t,})</span> where <span>(varvec{p in left( 2,2^{*}right) })</span> and <span>(varvec{mu &gt;0})</span> are constants. They proved the existence of infinitely many solutions with positive energy for the above problem if <span>(varvec{N&gt;max left( frac{2(p+1)}{p-1}, 4right) .})</span> In this present paper, we consider the case where the exponent <span>(varvec{p in left( 1,2right) })</span> and we show that if <span>(varvec{N&gt;frac{2(p+1)}{p-1},})</span> then the above problem admits an infinite set of solutions with positive energy. Our main result extend that obtained by P. Han in [9] for the case of elliptic problem with Dirichlet boundary conditions.</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal operators on hyperbolic triangles 双曲三角形上的极大算子
IF 1.1 2区 数学
Collectanea Mathematica Pub Date : 2023-11-25 DOI: 10.1007/s13348-023-00419-3
Romain Branchereau, Samuel Bronstein, Anthony Gauvan
{"title":"Maximal operators on hyperbolic triangles","authors":"Romain Branchereau, Samuel Bronstein, Anthony Gauvan","doi":"10.1007/s13348-023-00419-3","DOIUrl":"https://doi.org/10.1007/s13348-023-00419-3","url":null,"abstract":"<p>We characterize the boundedness properties on the spaces <span>(L^p( mathbb {H}^2))</span> of the maximal operator <span>(M_mathcal {B})</span> where <span>(mathcal {B})</span> is an arbitrary family of hyperbolic triangles stable by isometries. </p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cofiniteness of local cohomology modules and subcategories of modules 局部上同调模及其子范畴的共性
IF 1.1 2区 数学
Collectanea Mathematica Pub Date : 2023-11-21 DOI: 10.1007/s13348-023-00416-6
Ryo Takahashi, Naoki Wakasugi
{"title":"Cofiniteness of local cohomology modules and subcategories of modules","authors":"Ryo Takahashi, Naoki Wakasugi","doi":"10.1007/s13348-023-00416-6","DOIUrl":"https://doi.org/10.1007/s13348-023-00416-6","url":null,"abstract":"<p>Let <i>R</i> be a commutative noetherian ring and <i>I</i> an ideal of <i>R</i>. Assume that for all integers <i>i</i> the local cohomology module <span>({text {H}}_I^i(R))</span> is <i>I</i>-cofinite. Suppose that <span>(R_mathfrak {p})</span> is a regular local ring for all prime ideals <span>(mathfrak {p})</span> that do not contain <i>I</i>. In this paper, we prove that if the <i>I</i>-cofinite modules form an abelian category, then for all finitely generated <i>R</i>-modules <i>M</i> and all integers <i>i</i>, the local cohomology module <span>({text {H}}_I^i(M))</span> is <i>I</i>-cofinite.\u0000</p>","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138538921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the interior Bernoulli free boundary problem for the fractional Laplacian on an interval 区间上分数阶拉普拉斯算子的内伯努利自由边界问题
2区 数学
Collectanea Mathematica Pub Date : 2023-11-08 DOI: 10.1007/s13348-023-00417-5
Tadeusz Kulczycki, Jacek Wszoła
{"title":"On the interior Bernoulli free boundary problem for the fractional Laplacian on an interval","authors":"Tadeusz Kulczycki, Jacek Wszoła","doi":"10.1007/s13348-023-00417-5","DOIUrl":"https://doi.org/10.1007/s13348-023-00417-5","url":null,"abstract":"Abstract We study the structure of solutions of the interior Bernoulli free boundary problem for $$(-Delta )^{alpha /2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval D with parameter $$lambda &gt; 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . In particular, we show that there exists a constant $$lambda _{alpha ,D} &gt; 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>&gt;</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> (called the Bernoulli constant) such that the problem has no solution for $$lambda in (0,lambda _{alpha ,D})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , at least one solution for $$lambda = lambda _{alpha ,D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> and at least two solutions for $$lambda &gt; lambda _{alpha ,D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> . We also study the interior Bernoulli problem for the fractional Laplacian for an interval with one free boundary point. We discuss the connection of the Bernoulli problem with the corresponding variational problem and present some conjectures. In particular, we show for $$alpha = 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> that there exists solutions of the interior Bernoulli free boundary problem for $$(-Delta )^{alpha /2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval which are not minimizers of the corresponding variational problem.","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135391562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skew derivations of incidence algebras 关联代数的偏导
2区 数学
Collectanea Mathematica Pub Date : 2023-11-04 DOI: 10.1007/s13348-023-00423-7
Érica Z. Fornaroli, Mykola Khrypchenko
{"title":"Skew derivations of incidence algebras","authors":"Érica Z. Fornaroli, Mykola Khrypchenko","doi":"10.1007/s13348-023-00423-7","DOIUrl":"https://doi.org/10.1007/s13348-023-00423-7","url":null,"abstract":"","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135773670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Refined two weight estimates for the Bergman projection 改进了伯格曼投影的两个权重估计
2区 数学
Collectanea Mathematica Pub Date : 2023-11-01 DOI: 10.1007/s13348-023-00420-w
Gianmarco Brocchi
{"title":"Refined two weight estimates for the Bergman projection","authors":"Gianmarco Brocchi","doi":"10.1007/s13348-023-00420-w","DOIUrl":"https://doi.org/10.1007/s13348-023-00420-w","url":null,"abstract":"","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136103243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Lipschitz numerical index of Banach spaces Banach空间的Lipschitz数值指标
2区 数学
Collectanea Mathematica Pub Date : 2023-10-27 DOI: 10.1007/s13348-023-00421-9
Geunsu Choi, Mingu Jung, Hyung-Joon Tag
{"title":"On the Lipschitz numerical index of Banach spaces","authors":"Geunsu Choi, Mingu Jung, Hyung-Joon Tag","doi":"10.1007/s13348-023-00421-9","DOIUrl":"https://doi.org/10.1007/s13348-023-00421-9","url":null,"abstract":"","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136234349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Attractor for minimal iterated function systems 最小迭代函数系统的吸引子
2区 数学
Collectanea Mathematica Pub Date : 2023-10-24 DOI: 10.1007/s13348-023-00422-8
Aliasghar Sarizadeh
{"title":"Attractor for minimal iterated function systems","authors":"Aliasghar Sarizadeh","doi":"10.1007/s13348-023-00422-8","DOIUrl":"https://doi.org/10.1007/s13348-023-00422-8","url":null,"abstract":"","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135266020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Disjoint hypercyclic and supercyclic composition operators on discrete weighted Banach spaces 离散加权Banach空间上的不相交超循环和超循环复合算子
2区 数学
Collectanea Mathematica Pub Date : 2023-10-21 DOI: 10.1007/s13348-023-00418-4
Zhiyuan Xu, Ya Wang, Zehua Zhou
{"title":"Disjoint hypercyclic and supercyclic composition operators on discrete weighted Banach spaces","authors":"Zhiyuan Xu, Ya Wang, Zehua Zhou","doi":"10.1007/s13348-023-00418-4","DOIUrl":"https://doi.org/10.1007/s13348-023-00418-4","url":null,"abstract":"","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135512915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morelli-Włodarczyk cobordism and examples of rooftop flips Morelli-Włodarczyk协同主义和屋顶翻转的例子
2区 数学
Collectanea Mathematica Pub Date : 2023-09-19 DOI: 10.1007/s13348-023-00415-7
Lorenzo Barban, Alberto Franceschini
{"title":"Morelli-Włodarczyk cobordism and examples of rooftop flips","authors":"Lorenzo Barban, Alberto Franceschini","doi":"10.1007/s13348-023-00415-7","DOIUrl":"https://doi.org/10.1007/s13348-023-00415-7","url":null,"abstract":"Abstract We introduce the notion of rooftop flip, namely a small modification among normal projective varieties which is modeled by a smooth projective variety of Picard number 2 admitting two projective bundle structures. Examples include the Atiyah flop and the Mukai flop, modeled respectively by $$mathbb {P}^1times mathbb {P}^1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:math> and by $$mathbb {P}left( T_{mathbb {P}^2}right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mfenced> <mml:msub> <mml:mi>T</mml:mi> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:msub> </mml:mfenced> </mml:mrow> </mml:math> . Using the Morelli-Włodarczyk cobordism, we prove that any smooth projective variety of Picard number 1, endowed with a $${mathbb C}^*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> </mml:math> -action with only two fixed point components, induces a rooftop flip.","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135060768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信