Morelli-Włodarczyk协同主义和屋顶翻转的例子

IF 0.7 2区 数学 Q2 MATHEMATICS
Lorenzo Barban, Alberto Franceschini
{"title":"Morelli-Włodarczyk协同主义和屋顶翻转的例子","authors":"Lorenzo Barban, Alberto Franceschini","doi":"10.1007/s13348-023-00415-7","DOIUrl":null,"url":null,"abstract":"Abstract We introduce the notion of rooftop flip, namely a small modification among normal projective varieties which is modeled by a smooth projective variety of Picard number 2 admitting two projective bundle structures. Examples include the Atiyah flop and the Mukai flop, modeled respectively by $$\\mathbb {P}^1\\times \\mathbb {P}^1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:math> and by $$\\mathbb {P}\\left( T_{\\mathbb {P}^2}\\right) $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mfenced> <mml:msub> <mml:mi>T</mml:mi> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:msub> </mml:mfenced> </mml:mrow> </mml:math> . Using the Morelli-Włodarczyk cobordism, we prove that any smooth projective variety of Picard number 1, endowed with a $${\\mathbb C}^*$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> </mml:math> -action with only two fixed point components, induces a rooftop flip.","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morelli-Włodarczyk cobordism and examples of rooftop flips\",\"authors\":\"Lorenzo Barban, Alberto Franceschini\",\"doi\":\"10.1007/s13348-023-00415-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We introduce the notion of rooftop flip, namely a small modification among normal projective varieties which is modeled by a smooth projective variety of Picard number 2 admitting two projective bundle structures. Examples include the Atiyah flop and the Mukai flop, modeled respectively by $$\\\\mathbb {P}^1\\\\times \\\\mathbb {P}^1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo>×</mml:mo> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> </mml:math> and by $$\\\\mathbb {P}\\\\left( T_{\\\\mathbb {P}^2}\\\\right) $$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mfenced> <mml:msub> <mml:mi>T</mml:mi> <mml:msup> <mml:mrow> <mml:mi>P</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:msub> </mml:mfenced> </mml:mrow> </mml:math> . Using the Morelli-Włodarczyk cobordism, we prove that any smooth projective variety of Picard number 1, endowed with a $${\\\\mathbb C}^*$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mi>C</mml:mi> </mml:mrow> <mml:mo>∗</mml:mo> </mml:msup> </mml:math> -action with only two fixed point components, induces a rooftop flip.\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00415-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13348-023-00415-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要引入了屋顶翻转的概念,即普通射影变体中的一种小修正,它是由包含两个射影束结构的Picard数2的光滑射影变体来建模的。例子包括Atiyah触发器和Mukai触发器,分别由$$\mathbb {P}^1\times \mathbb {P}^1$$ p1 × p1和$$\mathbb {P}\left( T_{\mathbb {P}^2}\right) $$ P T p2建模。利用Morelli-Włodarczyk配合定理,我们证明了任何具有$${\mathbb C}^*$$ C * -作用且只有两个不动点分量的Picard数1的光滑投影变数都能引起屋顶翻转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Morelli-Włodarczyk cobordism and examples of rooftop flips

Morelli-Włodarczyk cobordism and examples of rooftop flips
Abstract We introduce the notion of rooftop flip, namely a small modification among normal projective varieties which is modeled by a smooth projective variety of Picard number 2 admitting two projective bundle structures. Examples include the Atiyah flop and the Mukai flop, modeled respectively by $$\mathbb {P}^1\times \mathbb {P}^1$$ P 1 × P 1 and by $$\mathbb {P}\left( T_{\mathbb {P}^2}\right) $$ P T P 2 . Using the Morelli-Włodarczyk cobordism, we prove that any smooth projective variety of Picard number 1, endowed with a $${\mathbb C}^*$$ C -action with only two fixed point components, induces a rooftop flip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Collectanea Mathematica
Collectanea Mathematica 数学-数学
CiteScore
2.70
自引率
9.10%
发文量
36
审稿时长
>12 weeks
期刊介绍: Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信