{"title":"区间上分数阶拉普拉斯算子的内伯努利自由边界问题","authors":"Tadeusz Kulczycki, Jacek Wszoła","doi":"10.1007/s13348-023-00417-5","DOIUrl":null,"url":null,"abstract":"Abstract We study the structure of solutions of the interior Bernoulli free boundary problem for $$(-\\Delta )^{\\alpha /2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval D with parameter $$\\lambda > 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . In particular, we show that there exists a constant $$\\lambda _{\\alpha ,D} > 0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> (called the Bernoulli constant) such that the problem has no solution for $$\\lambda \\in (0,\\lambda _{\\alpha ,D})$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , at least one solution for $$\\lambda = \\lambda _{\\alpha ,D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> and at least two solutions for $$\\lambda > \\lambda _{\\alpha ,D}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> . We also study the interior Bernoulli problem for the fractional Laplacian for an interval with one free boundary point. We discuss the connection of the Bernoulli problem with the corresponding variational problem and present some conjectures. In particular, we show for $$\\alpha = 1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> that there exists solutions of the interior Bernoulli free boundary problem for $$(-\\Delta )^{\\alpha /2}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval which are not minimizers of the corresponding variational problem.","PeriodicalId":50993,"journal":{"name":"Collectanea Mathematica","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the interior Bernoulli free boundary problem for the fractional Laplacian on an interval\",\"authors\":\"Tadeusz Kulczycki, Jacek Wszoła\",\"doi\":\"10.1007/s13348-023-00417-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the structure of solutions of the interior Bernoulli free boundary problem for $$(-\\\\Delta )^{\\\\alpha /2}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval D with parameter $$\\\\lambda > 0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> . In particular, we show that there exists a constant $$\\\\lambda _{\\\\alpha ,D} > 0$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> (called the Bernoulli constant) such that the problem has no solution for $$\\\\lambda \\\\in (0,\\\\lambda _{\\\\alpha ,D})$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> , at least one solution for $$\\\\lambda = \\\\lambda _{\\\\alpha ,D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> and at least two solutions for $$\\\\lambda > \\\\lambda _{\\\\alpha ,D}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:msub> <mml:mi>λ</mml:mi> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>,</mml:mo> <mml:mi>D</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> </mml:math> . We also study the interior Bernoulli problem for the fractional Laplacian for an interval with one free boundary point. We discuss the connection of the Bernoulli problem with the corresponding variational problem and present some conjectures. In particular, we show for $$\\\\alpha = 1$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> that there exists solutions of the interior Bernoulli free boundary problem for $$(-\\\\Delta )^{\\\\alpha /2}$$ <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\"> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mo>-</mml:mo> <mml:mi>Δ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:math> on an interval which are not minimizers of the corresponding variational problem.\",\"PeriodicalId\":50993,\"journal\":{\"name\":\"Collectanea Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collectanea Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13348-023-00417-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collectanea Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13348-023-00417-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the interior Bernoulli free boundary problem for the fractional Laplacian on an interval
Abstract We study the structure of solutions of the interior Bernoulli free boundary problem for $$(-\Delta )^{\alpha /2}$$ (-Δ)α/2 on an interval D with parameter $$\lambda > 0$$ λ>0 . In particular, we show that there exists a constant $$\lambda _{\alpha ,D} > 0$$ λα,D>0 (called the Bernoulli constant) such that the problem has no solution for $$\lambda \in (0,\lambda _{\alpha ,D})$$ λ∈(0,λα,D) , at least one solution for $$\lambda = \lambda _{\alpha ,D}$$ λ=λα,D and at least two solutions for $$\lambda > \lambda _{\alpha ,D}$$ λ>λα,D . We also study the interior Bernoulli problem for the fractional Laplacian for an interval with one free boundary point. We discuss the connection of the Bernoulli problem with the corresponding variational problem and present some conjectures. In particular, we show for $$\alpha = 1$$ α=1 that there exists solutions of the interior Bernoulli free boundary problem for $$(-\Delta )^{\alpha /2}$$ (-Δ)α/2 on an interval which are not minimizers of the corresponding variational problem.
期刊介绍:
Collectanea Mathematica publishes original research peer reviewed papers of high quality in all fields of pure and applied mathematics. It is an international journal of the University of Barcelona and the oldest mathematical journal in Spain. It was founded in 1948 by José M. Orts. Previously self-published by the Institut de Matemàtica (IMUB) of the Universitat de Barcelona, as of 2011 it is published by Springer.