{"title":"Impact response of fractionally damped rectangular plates made of viscoelastic composite materials","authors":"H. Teimouri , R.T. Faal , A.S. Milani","doi":"10.1016/j.apm.2024.115678","DOIUrl":"10.1016/j.apm.2024.115678","url":null,"abstract":"<div><div>The paper aims to find dynamic response of fractionally damped rectangular viscoelastic plates under low-velocity impact of a mass. The general fractional (Rubbery, Transition and Glassy) RTG model for the plate material was considered. First, the governing equation of the plate is derived and solved. Next, using the modified Hertz contact law, the governing integral equation of the problem in terms of indentation is derived and solved. Finally, relation between indentation and impact force is discretized and using the Mittag-Leffler function, history of impact force is obtained. The work is validated by comparison of the results with some particular cases and available experimental data.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115678"},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0307904X24004311/pdfft?md5=4aee5efee6ddb962eed54193890e9913&pid=1-s2.0-S0307904X24004311-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142311340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new variational integrator for constrained mechanical system dynamics","authors":"Ping Zhou, Hui Ren, Wei Fan, Zexu Zhang","doi":"10.1016/j.apm.2024.115719","DOIUrl":"10.1016/j.apm.2024.115719","url":null,"abstract":"<div><div>A new variational integrator is proposed to solve constrained mechanical systems. The main distinguishing feature of the present integrator comes from the distinct discretization of Lagrangians based on the Hamilton's principle in its most general form. Specifically, Hermite interpolation is used for discrete positions, which provides at least <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> continuity for generalized coordinates. The velocities and momentums are interpolated using quadratic polynomials for the consistency, such that the kinematic relation between velocities and positions can be exactly satisfied. Meanwhile, the Gauss-Legendre quadrature rule is employed to guarantee the accuracy of discrete Lagrange equations. To tackle constrained mechanical systems, a coordinate partition approach is used to eliminate the constraint equations. The local incremental rotation vector is exploited to get rid of rotation singularities in spatial problems. Moreover, an adaptive stepsize strategy is implemented to improve the efficiency. The strengths of the new integrator lie in the accessible large step sizes in the simulation and its global second-order accuracy for positions as well as velocities. Several examples are performed and analyzed to validate its accuracy and capabilities.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115719"},"PeriodicalIF":4.4,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermoelastic damping properties in hemi-ellipsoidal shells with variable thickness","authors":"Longkai Zheng, Shurui Wen, Fengming Li","doi":"10.1016/j.apm.2024.115720","DOIUrl":"10.1016/j.apm.2024.115720","url":null,"abstract":"<div><div>Thermoelastic damping (TED) is a fundamental dissipation mechanism that inevitably exists in shell resonators with high quality factors. Based on the thermal energy method, this paper demonstrates an effective method for the TED characterization of the hemi-ellipsoidal shells with variable thickness which manifest lower TED compared with the hemispherical shells. The equation of motion of the hemi-ellipsoidal shell under clamped-free boundary conditions is established by Hamilton's principle and the assumed mode method, and the natural frequencies and mode shape functions of the hemi-ellipsoidal shell with variable thickness are obtained by solving the eigenvalue problem. The temperature field is acquired by solving the heat conduction equation along the radial direction, and an analytical model for the TED of the hemi-ellipsoidal shell with variable thickness is presented by calculating the maximum elastic potential energy and the work lost per cycle of vibration due to irreversible heat conduction. Analysis on TED at the vibration patterns of meridional wave number <em>m</em> = 1 and the circumferential wave number <em>n</em> = 2 or 3 where the shell resonators typically operate is carried out. The analytically calculated TED results are compared with those of the finite element method (FEM) to verify the feasibility and correctness of the present method. The influences of the geometrical parameters on the TED characteristics of the hemi-ellipsoidal shells with variable thickness are analyzed in detail. A meaningful discovery is that compared with the hemispherical shell, the hemi-ellipsoidal shell with variable thickness has a smaller TED when its semiminor axis is shorter than the semimajor axis, which is particularly significant for optimizing the design of the shell resonators with high quality factors.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115720"},"PeriodicalIF":4.4,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Low-velocity impact response of sandwich plates with corrugation star-shaped honeycomb hybrid core","authors":"Shicheng Li , Bin Li , Tao Fu","doi":"10.1016/j.apm.2024.115715","DOIUrl":"10.1016/j.apm.2024.115715","url":null,"abstract":"<div><div>Compared with traditional lightweight corrugation and honeycomb cores, the novel cellular structure exhibiting a negative Poisson's ratio possesses distinctive mechanical deformation features, making it suitable for modeling lightweight sandwich structures. Therefore, the concept of combining the auxetic honeycomb core with folded corrugations is proposed to construct a new type of corrugation star-shaped honeycomb (SSH) hybrid core for studying the dynamic behavior of sandwich panels subjected to low-velocity impact. Integrate Hertz elasticity theory and first-order shear deformation theory (FSDT) to develop an equivalent analytical model, and derive the equations of motion through Hamilton principle. To model contact force interactions during dynamic processes, a spring-mass model is utilized. Analytical solutions are derived for predicting transverse displacement with Duhamel's principle and Navier's method. Numerical simulations are conducted using the Abaqus commercial software, and the validity of the results is confirmed by comparing them with findings in the existing literature. Based on this, effective strategies for enhancing the sandwich panel's resistance to low-velocity impacts are proposed by examining the influence of different side length ratios, thickness ratios, and cell concave angles. In comparison to the corrugation re-entrant hexagonal honeycomb hybrid core sandwich panel structure, the corrugation SSH hybrid core sandwich panel structure reduces transverse displacement by 33.6 % at the same impact velocity.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115715"},"PeriodicalIF":4.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of J-integral to adhesive contact under general plane loading for rolling resistance","authors":"Zhao-Yang Ma, Gan-Yun Huang","doi":"10.1016/j.apm.2024.115700","DOIUrl":"10.1016/j.apm.2024.115700","url":null,"abstract":"<div><div>In the present work, a mechanical model for two-dimensional non-slipping adhesive contact between dissimilar elastic solids under general loading, namely, normal forces, tangential forces and moments is proposed. The general solutions are obtained analytically with the stresses at the contact edges exhibiting oscillatory singularity, similar to those at a bimaterial interface crack. The well-known <em>J</em>-integral under the current context is analyzed. Its application under the selected integration contour readily gives the relationship between the stress intensity factors and energy release rates at the contact edges. With the results rolling adhesion between two solids with parabolic profiles is considered further. The applied moment can be directly determined by the difference in energy release rates at the trailing and leading edges and hence the rolling resistance even for adhesive contact with cohesive zones. These results provide the foundation for understanding some tribological phenomena associated with adhesion.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115700"},"PeriodicalIF":4.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0307904X24004530/pdfft?md5=8c73e5035168536e15c2db11574751b8&pid=1-s2.0-S0307904X24004530-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142275697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simulation of gas mixture dynamics in a pipeline network using explicit staggered-grid discretization","authors":"Yan Brodskyi , Vitaliy Gyrya , Anatoly Zlotnik","doi":"10.1016/j.apm.2024.115717","DOIUrl":"10.1016/j.apm.2024.115717","url":null,"abstract":"<div><div>We develop an explicit staggered finite difference discretization scheme for simulating the transport of highly heterogeneous gas mixtures through pipeline networks. This study is motivated by the proposed blending of hydrogen into natural gas pipelines to reduce end use carbon emissions while using existing pipeline systems throughout their planned lifetimes. Our computational method accommodates an arbitrary number of constituent gases with very different physical properties that may be injected into a network with significant spatiotemporal variation. In this setting, the gas flow physics are highly location- and time- dependent, so that local composition and nodal mixing must be accounted for. The resulting conservation laws are formulated in terms of pressure, partial densities and flows, and volumetric and mass fractions of the constituents. We include non-ideal equations of state that employ linear approximations of gas compressibility factors, so that the pressure dynamics propagate locally according to a variable wave speed that depends on mixture composition and density. We derive compatibility relationships for network edge boundary values that are more complex than for a homogeneous gas. The simulation method is evaluated on initial boundary value problems for a single pipe and a small network, is cross-validated with a lumped element simulation, and used to demonstrate a local monitoring and control policy for maintaining allowable concentration levels.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115717"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hang Xu , Xing-Chen Shangguan , Li Jin , Wen-Hu Chen
{"title":"Recovery control of autonomous underwater vehicles based on modified delay-product-type functional","authors":"Hang Xu , Xing-Chen Shangguan , Li Jin , Wen-Hu Chen","doi":"10.1016/j.apm.2024.115713","DOIUrl":"10.1016/j.apm.2024.115713","url":null,"abstract":"<div><div>This paper focuses on the recovery process of autonomous underwater vehicles, emphasizing a hierarchical framework in which autonomous underwater vehicles are categorized into a mothership and sub-vessels. In the recovery phase, following the completion of an underwater mission, sub-vessels navigate towards a location designated by the mothership. The crux of the recovery hinges on the design of the controller for adapting communication delays induced by environmental in underwater communication transmissions. The mothership and sub-vessels constitute a collaborative multi-autonomous underwater vehicles network equipped with these controllers, making them operate through the synchronized adjustment of their states represented in error terms. A delay-dependent controller condition criterion is proposed based on the modified delay-product-type Lyapunov-Krasovskii functional. The controller with the gain obtained from the criterion manages the system effectively and ensures successful recovery. The effectiveness of the proposed approach is demonstrated through a case study involving a network comprising one leading and four following autonomous underwater vehicles.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115713"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haizhong Zheng, Linchang Miao, Peng Xiao, Kaiyun Lei, Qian Wang
{"title":"Theoretical investigation on vibration reduction characteristics of a novel foundation metaconcrete beam","authors":"Haizhong Zheng, Linchang Miao, Peng Xiao, Kaiyun Lei, Qian Wang","doi":"10.1016/j.apm.2024.115679","DOIUrl":"10.1016/j.apm.2024.115679","url":null,"abstract":"<div><div>The issue of low-frequency vibration problems in foundation beams is becoming increasingly serious. Therefore, it is imperative to find new methods for effectively reducing and controlling these low-frequency vibrations. This study proposes a novel foundation metaconcrete beam to address the challenge of low-frequency vibrations based on locally resonance theory. Additionally, an improved transfer matrix method (ITMM) is proposed to quickly and effectively calculate the bandgap of foundation metaconcrete beam. The validity of the ITMM is verified through the plane wave expansion method (PWEM), and transmission characteristics are fully analyzed using the spectral element method (SEM). Furthermore, the influences of geometric and material parameters of the foundation metaconcrete beam on band structures and transmission functions are investigated in detail. The results show that the proposed foundation metaconcrete beam exhibits multiple bandgaps, and can effectively attenuate low-frequency vibrations. These bandgaps can be tailored by appropriately adjusting relevant parameters. The foundation properties determine the formation of the first bandgap, the damping ratio of the resonator has double effects on band structures, the mass ratio of the resonator is crucial in adjusting these bandgaps, and the axial force can adjust the attenuation capability of the first bandgap.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115679"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel method for concurrent dynamic topology optimization of hierarchical hybrid structures","authors":"Yunfei Liu , Ruxin Gao , Ying Li","doi":"10.1016/j.apm.2024.115710","DOIUrl":"10.1016/j.apm.2024.115710","url":null,"abstract":"<div><div>This paper proposes a feature-decoupled method for concurrent dynamic topology optimization of the Hierarchical Hybrid Structure (HHS) to minimize the steady-state dynamic response. First, a novel single-variable uniform multiphase material interpolation model is established based on the Gaussian function and normalization method, which achieves the decoupled description of the macroscopic topology, substructure topology, and the spatial distribution of the substructures for HHS. Second, by combining the extended multiscale finite element method (EMsFEM), which overcomes the limitations of the scale separation assumption and periodic boundary conditions in HHS response analysis, a concurrent dynamic topology optimization mathematical formulation for HHS is constructed. Finally, the sensitivity scheme is established based on the adjoint method, and the MMA algorithm was employed to update the model. Numerical examples verify the correctness and feasibility of the proposed method, demonstrate its advantages in solving HHS concurrent topology optimization problem compared to traditional methods, and explore the impact of the number of substructure types on the optimization results of HHS.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115710"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142314625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decentralized learning control for high-speed trains with unknown time-varying speed delays","authors":"Shuai Gao , Qijiang Song , Hao Jiang , Dong Shen , Yisheng Lv","doi":"10.1016/j.apm.2024.115711","DOIUrl":"10.1016/j.apm.2024.115711","url":null,"abstract":"<div><div>Treating the multi-point-mass dynamic model of high-speed trains as an interconnected system, this study proposes a decentralized iterative learning control scheme for high-speed trains to achieve the trajectory tracking goal. By making reasonable estimates of the interaction term and compensating for it, the proposed control scheme utilizes only local information from each carriage and does not need any inter-carriage information exchange. The zero-error tracking of the desired trajectory is guaranteed even in a restricted communication environment. Considering unknown time-varying speed delays in the actual high-speed train operations, a modified decentralized iterative learning control scheme is also provided to address the negative impact of speed delays. The convergence of tracking errors is strictly proven by constructing appropriate composite energy functions. Numerical simulations further verify the theoretical results.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"137 ","pages":"Article 115711"},"PeriodicalIF":4.4,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}