ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik最新文献

筛选
英文 中文
A comparative study of exact and neural network models for wave‐induced multiphase flow in nonuniform geometries: Application of Levenberg–Marquardt neural networks 非均匀几何形状中波诱导多相流的精确模型与神经网络模型的比较研究:Levenberg-Marquardt 神经网络的应用
S. M. Hussain, Nouman Ijaz, Sami Dhahbi, Najma Saleem, Ahmad Zeeshan
{"title":"A comparative study of exact and neural network models for wave‐induced multiphase flow in nonuniform geometries: Application of Levenberg–Marquardt neural networks","authors":"S. M. Hussain, Nouman Ijaz, Sami Dhahbi, Najma Saleem, Ahmad Zeeshan","doi":"10.1002/zamm.202400210","DOIUrl":"https://doi.org/10.1002/zamm.202400210","url":null,"abstract":"Multiphase fluids exhibit immiscible, heterogeneous structures like emulsions, foams, and suspensions. Their complex rheology arises from relative phase proportions, interfacial interactions, and component properties. Consequently, they demonstrate nonlinear effects—shear‐thinning, viscoelasticity, and yield stress. Peristalsis generates fluid flow by propagating contraction waves along channel walls. This mechanism can effectively transport multiphase and non‐Newtonian fluids in microsystems. Accurate modeling requires considering evolving phase relations, variable viscosity, slip, and particle migration anomalies, using approaches like homogenization theory or volume‐averaging. Applications include peristaltic pumping of emulsified biopharmaceuticals, microscale mixing/separating of multiphase constituents, and enhancing porous media fluid flow in oil reservoirs. Analytical and computational approaches to modeling multiphase fluid flows in peristaltic conduits provide an enhanced understanding of their complex dynamics, toward innovating engineering systems. An analytical approach is taken to model non‐Newtonian Ree‐Eyring fluid flows in asymmetric, peristaltic systems. Governing differential equations incorporate key parameters and yield closed‐form solutions for velocity, flow rate, and permeability. Suitable assumptions of long wavelength, and low Reynolds number provide accuracy. In parallel, an artificial neural network (ANN) is developed using supervised learning to predict permeability. The inputs consist of channel asymmetry, Reynolds number, amplitude ratio, and other physical factors. Outcomes validate both methodologies—analytical equations derive precise relationships from first principles, while ANNs reliably learn the system patterns from input‐output data. Additionally, ANNs can tackle more complex fluid dynamics problems with speed and adaptability. Their promising role is highlighted in developing new fluid models, improving the efficiency of simulations, and designing control systems. Side‐by‐side analytical and ANN simulation plots will further highlight ANN capabilities in emulating the system characteristics. This paves the path for employing machine learning to investigate multifaceted flows in flexible, peristaltic systems at scale. Performing a graphical examination of the engineering skin friction coefficient across a range of parameters, encompassing volume fraction, first and second order slip, Ree–Eyring fluid attributes, and permeability.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peristaltic transport with multiple solutions of heat and mass transfer using modified Buongiorno nanofluid model over tapered channel with long wave‐length at small Reynolds number 利用改进的 Buongiorno 纳米流体模型,在小雷诺数条件下,在长波长锥形通道上进行多解传热和传质的蠕动传输
Abdul Hamid Ganie, Zeeshan, Ali M. Mahnashi, Ahmad Shafee, Rasoo Shah, Dowlath Fathima
{"title":"Peristaltic transport with multiple solutions of heat and mass transfer using modified Buongiorno nanofluid model over tapered channel with long wave‐length at small Reynolds number","authors":"Abdul Hamid Ganie, Zeeshan, Ali M. Mahnashi, Ahmad Shafee, Rasoo Shah, Dowlath Fathima","doi":"10.1002/zamm.202400110","DOIUrl":"https://doi.org/10.1002/zamm.202400110","url":null,"abstract":"This research paper aims to investigate the peristaltic transport of a nanofluid (NF) in a tapered asymmetric channel. Initially, the governing equations for the balance of mass, momentum, temperature, and volume fraction for the NF using Reiner–Philippoff (RP) based NF are formulated. Subsequently, these equations are employed to analyze long wavelength and small Reynolds number scenarios. The numerical results for various flow features are thoroughly examined and discussed. Dual solutions have been examined for some factors. So, stability assessment is implemented to find stable solution. Novelty of the existing is to investigate the peristaltic motion of Buongiorno's NF model and its stability which has not investigated in the previous literatures. It has been demonstrated that modifying the RPF parameter leads to a transition in the fluid's velocity, changing it from a dilatant liquid to a Newtonian fluid and from Newtonian to pseudoplastic. The findings indicate that the temperature curves rise as Brownian motion and thermophoretic factors increase, while they decrease as the Prandtl number increases. Furthermore, a concise mathematical and graphical analysis is carried out to examine the impact of each key parameter on the flow characteristics.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141818431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A neuro‐computational study of viscous dissipation and nonlinear Arrhenius chemical kinetics during the hypodicarbonous acid‐based hybrid nanofluid flow past a Riga plate 基于次碳酸的混合纳米流体流经里加板时的粘性耗散和非线性阿伦尼乌斯化学动力学的神经计算研究
Asad Ullah, Hongxing Yao, Ikramullah, N. A. Othman, El‐Sayed M. Sherif
{"title":"A neuro‐computational study of viscous dissipation and nonlinear Arrhenius chemical kinetics during the hypodicarbonous acid‐based hybrid nanofluid flow past a Riga plate","authors":"Asad Ullah, Hongxing Yao, Ikramullah, N. A. Othman, El‐Sayed M. Sherif","doi":"10.1002/zamm.202400208","DOIUrl":"https://doi.org/10.1002/zamm.202400208","url":null,"abstract":"We examine the flow of Casson hybrid nanofluid (Cu+/) through a Riga plate sensor with perforations that act as an electromagnetic actuator. The hypodicarbonous acid is considered a base fluid. The impact of Arrhenius chemical kinetics and viscous dissipation are taken into account during the dynamics. The problem is formulated by considering the heat and mass transfer. An appropriate scaling is used to reduce the complexity of the problem, and further transform it into a system of ordinary differential equations (ODEs). The reduced system is further set for the first‐order system of equations that are analyzed with the Artificial Neural Network (ANN) which is trained with the Levenberg–Marquardt algorithm. The results for the state variables are displayed through graphs and tables by performing 1000 independent iterations with tolerance and . The Hartman, Casson, and Richardson numbers with their increasing values enhance the velocity profile. The chemical reaction parameter and the Prandtl number decline the thermal and concentration profiles, respectively. The Statistical analysis in the form of regression and histograms is also carried out in each case. The absolute error (AE) ranges up to and validations that range up to are presented for the varying values of each parameter. A comparative analysis of the nanofluid (NF) and hybrid nanofluid (HNF) is performed in each case study. The results for skin friction and Nusselt number are displayed numerically in the form of tables and are compared with the available literature, where the accuracy and performance of ANN are proved.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141831087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insights into metachronal propulsion's influence on Ellis fluid flow across tri‐layers amid dynamic thermal transport: Theoretical study 洞察元推动力对三层动态热传输中埃利斯流体流动的影响:理论研究
S. Shaheen, M. B. Arain, Nouman Ijaz, Faisal Z. Duraihem, Junhui Hu
{"title":"Insights into metachronal propulsion's influence on Ellis fluid flow across tri‐layers amid dynamic thermal transport: Theoretical study","authors":"S. Shaheen, M. B. Arain, Nouman Ijaz, Faisal Z. Duraihem, Junhui Hu","doi":"10.1002/zamm.202300977","DOIUrl":"https://doi.org/10.1002/zamm.202300977","url":null,"abstract":"Cilia‐based therapies are emerging for treating ciliopathies, such as inhalable drugs to propel mucus out of the lungs of patients with cystic fibrosis. This has motivated scientists and researchers to investigate cilia motion mechanics and viscoelastic fluid properties for biomedical engineering applications and disease treatments. In line with the diverse biological implications, this study focuses on the mass and heat transfer flow of tri‐layered non‐Newtonian fluids propelled by ciliary beating in a cylindrical tube. The fluid remains incompressible, with distinct layers that do not mix. The study considers the impact of mass and heat transfer in three distinct regimes, ensuring continuity at the interfaces. Mathematical modeling incorporating the lubrication approximation, small Reynolds number, and long wavelength approximation is employed for simplification. The resulting differential equations, along with boundary conditions, yield accurate solutions for temperature, velocity, and concentration fields in the three fluid layers and are discussed graphically. Key findings demonstrate that velocity and temperature fields are most pronounced in the inner fluid layer (PCL), while the concentration profile is most prominent in the outer layers (ACL), with moderate behavior in the central region. The implications of this research extend to diverse fields, including mucus clearance from the respiratory tract, microfluidics, esophageal transport, biofluid mechanics, and other areas of physiology. The insights gained from this study have promising applications in developing new treatments and biomedical engineering solutions.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of chemical characteristics of engine‐oil‐based Prandtl hybrid nanofluid flow 基于发动机油的普朗特混合纳米流体流动的化学特性分析
A. Awan, Sidra Qayyum, S. Nadeem, N. A. Ahammad, Khaled A. Gepreel, Mohammed Alharthi, Moataz Alosaimi
{"title":"Analysis of chemical characteristics of engine‐oil‐based Prandtl hybrid nanofluid flow","authors":"A. Awan, Sidra Qayyum, S. Nadeem, N. A. Ahammad, Khaled A. Gepreel, Mohammed Alharthi, Moataz Alosaimi","doi":"10.1002/zamm.202400050","DOIUrl":"https://doi.org/10.1002/zamm.202400050","url":null,"abstract":"The literature showed that an empirical experiment creates another part of exploration that has been made in the field of thermal science, such that today, modern researchers are more directed to utilize hybrid types of nanoparticles due to their efficient thermal conductivity compared to single nanoparticles. The study of the hybrid flow of nanofluid is essential in many scientific and industrial arguments, such as power generation, medical equipment, oil refineries, and so forth. Furthermore, it has distinctive features to advance the expertise of their energy sources and cooling methodologies. Incentives by this research postulation: The significant objective of this investigation is to design a mathematical model of Prandtl hybrid nano liquid flow over a Riga plate when nanoparticles of aluminum alloys (AA7072 and AA7075) are suspended in engine oil. Mixed convection, activation energy, and heat radiation are also considered. The nanomaterial is modeled using a modified Buongiorno model that considers the functional qualities of hybrid nanofluids. The simulated PDEs are converted into a collection of nonlinear ODEs with appropriate and relevant similarity transformations, which are numerically addressed using finite‐difference‐oriented bvp4c procedure in MATLAB. Graphs and tables are used to evaluate and show the impacts of different factors on velocity, temperature, concentration fields, skin friction number, and Nusselt number. The velocity profile develops with the enhancement of Prandtl fluid parameters. With the increment in the magnetic parameter, both temperature and concentration profiles improve, but in the case of the Brownian motion parameter, the concentration profile declines. In terms of heat transfer, hybrid nanofluids outperform ordinary nanofluids. The current results provide an equitable contrast against the results that already exist.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heat and mass transfer analysis of non‐miscible couple stress and micropolar fluids flow through a porous saturated channel 流经多孔饱和通道的非混溶耦合应力和微极性流体的传热和传质分析
Ankit Kumar, P. Yadav
{"title":"Heat and mass transfer analysis of non‐miscible couple stress and micropolar fluids flow through a porous saturated channel","authors":"Ankit Kumar, P. Yadav","doi":"10.1002/zamm.202300635","DOIUrl":"https://doi.org/10.1002/zamm.202300635","url":null,"abstract":"This study examines the flow rate, Bejan number transportation, concentration distribution and thermal characteristics of an immiscible couple stress‐ micropolar fluids within a porous channel. The authors focus on the effects of heat radiation and an angled magnetic field on the thermal dispersion, concentration distribution and entropy formation of two different types of incompressible immiscible micropolar and couple stress fluids inside a porous channel. Here, the static walls of the channel are isothermal, and the pressure gradient in the flow domain's entrance zone is constant. In this flow problem, we tried to simulate thermal radiation in the energy equation by applying Rosseland's diffusion approximation. To solve the problem, the authors have used no‐slip conditions at the channel's immovable walls, a continuity of temperature profile, shear stresses, thermal flux, linear velocity, and micro‐rotational velocity over the fluid‐fluid interface. The equations that govern the flow of immiscible fluids are solved using a well‐defined methodology and both the temperature and flow field are then evaluated using a closed‐form solution. The mathematical results of the thermal distribution and flow velocity are used to derive the Bejan number distribution and the entropy generation number. Graphical discussions are used to illustrate the impact of different emerging factors on the model's flow and thermal properties, which describe the major impact of the proposed model. These variables involve the micropolarity parameter, Reynolds number, inclination angle parameter, radiation parameter, and Hartmann number. The outcomes of the present models are corroborated by previously established results available in the literature.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141640704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear instability of surface waves between viscous–liquid and subsonic‐gas layers subject to uniform oblique magnetic field 受均匀斜磁场影响的粘性液体层和亚音速气体层之间表面波的非线性不稳定性
A. Assaf, Noha M. Hafez
{"title":"Nonlinear instability of surface waves between viscous–liquid and subsonic‐gas layers subject to uniform oblique magnetic field","authors":"A. Assaf, Noha M. Hafez","doi":"10.1002/zamm.202301016","DOIUrl":"https://doi.org/10.1002/zamm.202301016","url":null,"abstract":"Nonlinear instability of surface waves between viscous–liquid and inviscid‐gas layers is discussed. The two fluids are magnetic and subjected to uniform oblique magnetic field. The gas is subsonic and the viscosity is introduced by viscous potential approximation. The evolution equations near and on the marginal state are derived by means of multiple scales technique. The stability criteria of the waves are obtained by the modulation idea. Many special cases of dispersion equation as well as solvability conditions correspond well the similar ones in the literature. Various numerical applications have been investigated to reveal the parameters effects on the system stability. Linear results show dual influences for magnetic field, sum of inclination angles and permeability ratio whereas the wavelength, gas motion, and inclination angle in the liquid tend to destabilize the flow. Nonlinear applications reveal dual role for the gas thickness, while it has a linear stable‐role. Moreover, nonlinearity shows dual roles for viscosity and liquid thickness, which have no influences according to linear theory. The investigation of stability using nonlinear theory seems more accurate to describe the (un)stable influences comparing with the linear one. The current work may be useful to give more accurate comprehension of stability process as well as to obtain the required conditions of stability by designing suitable devices, which control the model parameters.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141356756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the effective stress behavior of internally pressurized cylinders with varying density 探索密度不同的内压圆柱体的有效应力行为
Arjun Singh, Priya Gulial, Pankaj Thakur
{"title":"Exploring the effective stress behavior of internally pressurized cylinders with varying density","authors":"Arjun Singh, Priya Gulial, Pankaj Thakur","doi":"10.1002/zamm.202400254","DOIUrl":"https://doi.org/10.1002/zamm.202400254","url":null,"abstract":"This research article presents a comprehensive examination of effective stress behavior in internally pressurized cylinders with varying density, utilizing Norton's law as the analytical framework. Our thorough numerical computations encompass a wide array of steels and steel alloys commonly employed in cylinder fabrication, covering five distinct types of anisotropy. The investigation meticulously analyzes the profound impact of anisotropy and the exponent “n” within the creep law. A key insight emerges as the effective stress values for anisotropic materials, particularly in Type‐I and Type‐II, showcase a notable reduction compared to their isotropic counterparts in Type‐III. Moreover, we highlight the active role played by an increasing density parameter in elevating the values of radial, circumferential, axial stress, and effective stress within the rotating cylinder composed of anisotropic materials.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141358642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of nonlocality on low and high frequency behaviors of functionally graded sandwich nanoplates 非位置性对功能分级夹层纳米板低频和高频行为的影响
M. Ghazwani, A. Alnujaie, M. Eltaher, Pham Van Vinh
{"title":"The role of nonlocality on low and high frequency behaviors of functionally graded sandwich nanoplates","authors":"M. Ghazwani, A. Alnujaie, M. Eltaher, Pham Van Vinh","doi":"10.1002/zamm.202400088","DOIUrl":"https://doi.org/10.1002/zamm.202400088","url":null,"abstract":"The role of nonlocality on low and high frequency behaviors and modes of the functionally graded (FG) sandwich nanoplates is investigated in this study for the first time using simple nonlocal higher‐order shear deformation theory (HSDT). The simple HSDT consists of only four unknowns in its equation of the displacement field. The nonlocal elasticity theory is used to consider the small‐scale effects on the behaviors of the nanoplates. The governing equations of motion are established by applying Hamilton's principle, then Navier's solution technique is employed to solve these equations to achieve the free vibration behaviors of the FG sandwich nanoplates. The vibrations of the nanoplates under both low and high frequency conditions are investigated, but the high frequency vibration of the nanoplates is discussed extensively. The influences of the geometrical dimensions, material gradient index, and nonlocal parameter on the high frequency vibration of the FG nanoplates are also considered and discussed comprehensively.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electro‐osmotically engendered biofluid investigation through complex curvy passage 通过复杂曲线通道进行电渗透生物流体研究
S. Ijaz, Sobia Bibi, Iqra Shahzadi
{"title":"Electro‐osmotically engendered biofluid investigation through complex curvy passage","authors":"S. Ijaz, Sobia Bibi, Iqra Shahzadi","doi":"10.1002/zamm.202301009","DOIUrl":"https://doi.org/10.1002/zamm.202301009","url":null,"abstract":"This study investigates the physical characteristics of a two‐dimensional Jeffery fluid by incorporating the electroosmosis effect and employing slip boundary conditions along wavy walls. The equations that drive the flow analysis have been converted into nondimensional form and solved by assuming a high wavelength and a low Reynolds number approximation. The outputs for hemodynamic velocity, stress on the walls, and temperature for the flow are obtained exactly. Graphic representations of the effects of relevant physical parameters on the computational results are discussed in detail. Additionally, it is found that the viscous dissipation effects are the primary cause of heat production, rather than molecular conduction.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141377783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信