Analysis of chemical characteristics of engine‐oil‐based Prandtl hybrid nanofluid flow

A. Awan, Sidra Qayyum, S. Nadeem, N. A. Ahammad, Khaled A. Gepreel, Mohammed Alharthi, Moataz Alosaimi
{"title":"Analysis of chemical characteristics of engine‐oil‐based Prandtl hybrid nanofluid flow","authors":"A. Awan, Sidra Qayyum, S. Nadeem, N. A. Ahammad, Khaled A. Gepreel, Mohammed Alharthi, Moataz Alosaimi","doi":"10.1002/zamm.202400050","DOIUrl":null,"url":null,"abstract":"The literature showed that an empirical experiment creates another part of exploration that has been made in the field of thermal science, such that today, modern researchers are more directed to utilize hybrid types of nanoparticles due to their efficient thermal conductivity compared to single nanoparticles. The study of the hybrid flow of nanofluid is essential in many scientific and industrial arguments, such as power generation, medical equipment, oil refineries, and so forth. Furthermore, it has distinctive features to advance the expertise of their energy sources and cooling methodologies. Incentives by this research postulation: The significant objective of this investigation is to design a mathematical model of Prandtl hybrid nano liquid flow over a Riga plate when nanoparticles of aluminum alloys (AA7072 and AA7075) are suspended in engine oil. Mixed convection, activation energy, and heat radiation are also considered. The nanomaterial is modeled using a modified Buongiorno model that considers the functional qualities of hybrid nanofluids. The simulated PDEs are converted into a collection of nonlinear ODEs with appropriate and relevant similarity transformations, which are numerically addressed using finite‐difference‐oriented bvp4c procedure in MATLAB. Graphs and tables are used to evaluate and show the impacts of different factors on velocity, temperature, concentration fields, skin friction number, and Nusselt number. The velocity profile develops with the enhancement of Prandtl fluid parameters. With the increment in the magnetic parameter, both temperature and concentration profiles improve, but in the case of the Brownian motion parameter, the concentration profile declines. In terms of heat transfer, hybrid nanofluids outperform ordinary nanofluids. The current results provide an equitable contrast against the results that already exist.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The literature showed that an empirical experiment creates another part of exploration that has been made in the field of thermal science, such that today, modern researchers are more directed to utilize hybrid types of nanoparticles due to their efficient thermal conductivity compared to single nanoparticles. The study of the hybrid flow of nanofluid is essential in many scientific and industrial arguments, such as power generation, medical equipment, oil refineries, and so forth. Furthermore, it has distinctive features to advance the expertise of their energy sources and cooling methodologies. Incentives by this research postulation: The significant objective of this investigation is to design a mathematical model of Prandtl hybrid nano liquid flow over a Riga plate when nanoparticles of aluminum alloys (AA7072 and AA7075) are suspended in engine oil. Mixed convection, activation energy, and heat radiation are also considered. The nanomaterial is modeled using a modified Buongiorno model that considers the functional qualities of hybrid nanofluids. The simulated PDEs are converted into a collection of nonlinear ODEs with appropriate and relevant similarity transformations, which are numerically addressed using finite‐difference‐oriented bvp4c procedure in MATLAB. Graphs and tables are used to evaluate and show the impacts of different factors on velocity, temperature, concentration fields, skin friction number, and Nusselt number. The velocity profile develops with the enhancement of Prandtl fluid parameters. With the increment in the magnetic parameter, both temperature and concentration profiles improve, but in the case of the Brownian motion parameter, the concentration profile declines. In terms of heat transfer, hybrid nanofluids outperform ordinary nanofluids. The current results provide an equitable contrast against the results that already exist.
基于发动机油的普朗特混合纳米流体流动的化学特性分析
文献显示,经验性实验为热科学领域的探索开创了另一片天地,如今,现代研究人员更倾向于利用混合型纳米粒子,因为与单一纳米粒子相比,混合型纳米粒子具有高效的导热性。对纳米流体混合流动的研究在许多科学和工业论证中都是必不可少的,如发电、医疗设备、炼油等。此外,纳米流体在推动能源和冷却方法的专业化方面具有独特的功能。本研究假设的激励因素:本研究的重要目标是设计一个普朗特尔混合纳米液体在里加板上流动的数学模型,当纳米铝合金(AA7072 和 AA7075)悬浮在发动机油中时。模型还考虑了混合对流、活化能和热辐射。纳米材料的建模采用改进的 Buongiorno 模型,该模型考虑了混合纳米流体的功能特性。模拟的 PDE 通过适当的相关相似性变换转换为一系列非线性 ODE,并使用 MATLAB 中面向有限差分的 bvp4c 程序对其进行数值处理。图表用于评估和显示不同因素对速度、温度、浓度场、表皮摩擦系数和努塞尔特数的影响。速度曲线随着普朗特流体参数的增加而发展。随着磁性参数的增加,温度和浓度曲线都有所改善,但在布朗运动参数的情况下,浓度曲线有所下降。在传热方面,混合纳米流体优于普通纳米流体。目前的结果与已有的结果形成了公平的对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信