Heat and mass transfer analysis of non‐miscible couple stress and micropolar fluids flow through a porous saturated channel

Ankit Kumar, P. Yadav
{"title":"Heat and mass transfer analysis of non‐miscible couple stress and micropolar fluids flow through a porous saturated channel","authors":"Ankit Kumar, P. Yadav","doi":"10.1002/zamm.202300635","DOIUrl":null,"url":null,"abstract":"This study examines the flow rate, Bejan number transportation, concentration distribution and thermal characteristics of an immiscible couple stress‐ micropolar fluids within a porous channel. The authors focus on the effects of heat radiation and an angled magnetic field on the thermal dispersion, concentration distribution and entropy formation of two different types of incompressible immiscible micropolar and couple stress fluids inside a porous channel. Here, the static walls of the channel are isothermal, and the pressure gradient in the flow domain's entrance zone is constant. In this flow problem, we tried to simulate thermal radiation in the energy equation by applying Rosseland's diffusion approximation. To solve the problem, the authors have used no‐slip conditions at the channel's immovable walls, a continuity of temperature profile, shear stresses, thermal flux, linear velocity, and micro‐rotational velocity over the fluid‐fluid interface. The equations that govern the flow of immiscible fluids are solved using a well‐defined methodology and both the temperature and flow field are then evaluated using a closed‐form solution. The mathematical results of the thermal distribution and flow velocity are used to derive the Bejan number distribution and the entropy generation number. Graphical discussions are used to illustrate the impact of different emerging factors on the model's flow and thermal properties, which describe the major impact of the proposed model. These variables involve the micropolarity parameter, Reynolds number, inclination angle parameter, radiation parameter, and Hartmann number. The outcomes of the present models are corroborated by previously established results available in the literature.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":"10 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the flow rate, Bejan number transportation, concentration distribution and thermal characteristics of an immiscible couple stress‐ micropolar fluids within a porous channel. The authors focus on the effects of heat radiation and an angled magnetic field on the thermal dispersion, concentration distribution and entropy formation of two different types of incompressible immiscible micropolar and couple stress fluids inside a porous channel. Here, the static walls of the channel are isothermal, and the pressure gradient in the flow domain's entrance zone is constant. In this flow problem, we tried to simulate thermal radiation in the energy equation by applying Rosseland's diffusion approximation. To solve the problem, the authors have used no‐slip conditions at the channel's immovable walls, a continuity of temperature profile, shear stresses, thermal flux, linear velocity, and micro‐rotational velocity over the fluid‐fluid interface. The equations that govern the flow of immiscible fluids are solved using a well‐defined methodology and both the temperature and flow field are then evaluated using a closed‐form solution. The mathematical results of the thermal distribution and flow velocity are used to derive the Bejan number distribution and the entropy generation number. Graphical discussions are used to illustrate the impact of different emerging factors on the model's flow and thermal properties, which describe the major impact of the proposed model. These variables involve the micropolarity parameter, Reynolds number, inclination angle parameter, radiation parameter, and Hartmann number. The outcomes of the present models are corroborated by previously established results available in the literature.
流经多孔饱和通道的非混溶耦合应力和微极性流体的传热和传质分析
本研究探讨了多孔通道内不相溶耦合应力微元流体的流速、贝扬数传输、浓度分布和热特性。作者重点研究了热辐射和倾斜磁场对多孔通道内两种不同类型的不可压缩不相溶微观和耦合应力流体的热扩散、浓度分布和熵形成的影响。在这里,通道的静态壁是等温的,流域入口区的压力梯度是恒定的。在这个流动问题中,我们试图通过应用 Rosseland 扩散近似来模拟能量方程中的热辐射。为了解决这个问题,作者在通道的不动壁上使用了无滑动条件,在流体-流体界面上使用了连续的温度曲线、剪应力、热通量、线速度和微旋转速度。采用定义明确的方法求解支配不相溶流体流动的方程,然后使用闭式解法评估温度场和流场。热分布和流速的数学结果用于推导贝扬数分布和熵生成数。图表讨论用于说明不同新出现的因素对模型流动和热特性的影响,这些因素描述了拟议模型的主要影响。这些变量涉及微极性参数、雷诺数、倾角参数、辐射参数和哈特曼数。本模型的结果与先前文献中的既定结果相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信