Physics of Fluids最新文献

筛选
英文 中文
A novel multiphase and multicomponent model for simulating molecular diffusion in shale oil reservoirs with complex fracture networks 用于模拟具有复杂断裂网络的页岩油藏分子扩散的新型多相多组分模型
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0205812
Yi Han, Zhengdong Lei, Chao Wang, Yishan Liu, Jie Liu, Pengfei Du, Yanwei Wang, Pengcheng Liu
{"title":"A novel multiphase and multicomponent model for simulating molecular diffusion in shale oil reservoirs with complex fracture networks","authors":"Yi Han, Zhengdong Lei, Chao Wang, Yishan Liu, Jie Liu, Pengfei Du, Yanwei Wang, Pengcheng Liu","doi":"10.1063/5.0205812","DOIUrl":"https://doi.org/10.1063/5.0205812","url":null,"abstract":"Molecular diffusion is critical for enhanced oil recovery (EOR) in shale oil reservoirs with complex fracture networks. Understanding the influence of fractures on diffusive mass transfer is crucial for predicting oil recovery and remaining oil distribution. Diffusive mass transfer between fractures and matrix is critical in comprehensively and effectively simulating molecular diffusion. Resolution of matrix cells significantly affects diffusion accuracy at the fracture–matrix interface. Low resolution results in multiple fractures in the same matrix cell, leading to decreased precision in calculating mass transfer by conventional methods. To address this, a novel multiphase and multicomponent model is proposed. The new model integrating the consideration of fracture spacing modifies molecular diffusion transmissibility between fracture and matrix in an embedded discrete fracture model. The discretization employs the two-point flux approximation in the finite-volume method. Validation compares the coarser mesh to the finest grid as a reliable reference. Results show the proposed model accurately captures diffusive mass transfer in a coarser mesh. Modified models study molecular diffusion's effects on EOR in shale oil reservoirs with complex fracture networks by CO2 huff and puff. Results indicate that increasing injection rates cannot improve oil recovery under extremely low porosity and permeability. Molecular diffusion facilitates CO2 penetration into the formation. This expands the swept CO2 volume and increases both volume expansion and formation energy. In addition, the light and heavy components of the crude oil are diffused into the fractures and eventually produced, which reduces gas production in the case of diffusion.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"2016 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141026992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the extreme wall shear stress events in a turbulent pipe flow 关于湍流管道流中的极端壁面剪应力事件
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0206708
Haoqi Fei, Rui Wang, Pengyu Lai, Jing Wang, Hui Xu
{"title":"On the extreme wall shear stress events in a turbulent pipe flow","authors":"Haoqi Fei, Rui Wang, Pengyu Lai, Jing Wang, Hui Xu","doi":"10.1063/5.0206708","DOIUrl":"https://doi.org/10.1063/5.0206708","url":null,"abstract":"This study investigates the extreme wall shear stress events in a turbulent pipe flow by direct numerical simulation at a frictional Reynolds number Reτ≈500. A two-step conditional averaging scheme is implemented to identify the locations of extreme events and construct their spatial structures. Combined with the joint probability density functions of shear stresses, further evidence is provided for the argument that extreme positive events occur below an intense sweep event (Q4), and the formation of the backflow events is predominantly aided by an identifiable oblique vortex. Moreover, the conditional probability distribution of shear stress for varying thresholds used to define extreme events reveals that, when the threshold is above or below the mean, the probability distributions of the extreme positive events or the backflow events generally follow an exponential relationship, suggesting the extreme wall shear stress events are a threshold-independent process. Finally, the conditional space–time proper orthogonal decomposition is performed to extract the dominant modes and characterize the evolution of the extreme events from inception to dissipation, which exhibits morphological features of real flow structures. It is found that the observation of uθ modes can provide a basic representation of the entire variation process and the extreme values return to normal levels in a very short time.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"228 S732","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying wake dynamics subjected to stream vegetation patch elongation: The influence of patch-edge vortices 受溪流植被斑块伸长影响的唤醒动力学量化:斑块边缘涡流的影响
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0204290
Yuan-Heng Zhang, Huan-Feng Duan, Xu-Feng Yan, A. Stocchino
{"title":"Quantifying wake dynamics subjected to stream vegetation patch elongation: The influence of patch-edge vortices","authors":"Yuan-Heng Zhang, Huan-Feng Duan, Xu-Feng Yan, A. Stocchino","doi":"10.1063/5.0204290","DOIUrl":"https://doi.org/10.1063/5.0204290","url":null,"abstract":"Vortices are generated across a wide range of scales due to the interaction between in-stream vegetation and surrounding flows, significantly influencing hydro-geomorphodynamics in earth surface water systems. Recent advance in vegetation patch hydrodynamics has revealed that the elongation of the middle channel patch can generate complex wake flow patterns by adjusting the bleed flow from the patch and triggering the patch-edge Kelvin–Helmholtz (KH) vortices. With a broader range of experimental configurations, this study reveals how the patch wake mixing is apparently strengthened by the presence of KH vortices, indicated by a larger steady wake velocity, a shorter steady wake length, and a damped energy of wake von Karman vortex. Furthermore, we quantify these characteristic metrics of patch wake behavior with and without the influence of KH vortices. Our findings provide insights into the role of vegetation-induced vortex interactions in regulating mixing processes, thereby promoting informed practices in environmental flows.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"23 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141054144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel thermal turbulence reconstruction method using proper orthogonal decomposition and compressed sensing coupled based on improved particle swarm optimization for sensor arrangement 基于改进型粒子群优化传感器布置的适当正交分解与压缩传感耦合的新型热湍流重构方法
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0203159
Zhenhuan Zhang, Xiuyan Gao, Qixiang Chen, Yuan Yuan
{"title":"A novel thermal turbulence reconstruction method using proper orthogonal decomposition and compressed sensing coupled based on improved particle swarm optimization for sensor arrangement","authors":"Zhenhuan Zhang, Xiuyan Gao, Qixiang Chen, Yuan Yuan","doi":"10.1063/5.0203159","DOIUrl":"https://doi.org/10.1063/5.0203159","url":null,"abstract":"With the development of offshore wind turbine single power toward levels beyond 10 MW, the increase in heat loss of components in the nacelle leads to a high local temperature in the nacelle, which seriously affects the performance of the components. Accurate reconstruction and control of thermal turbulence in the nacelle can alleviate this problem. However, the physical environment of thermal turbulence in the nacelle is very complex. Due to the intermittent and fluctuating nature of turbulence, the turbulent thermal environment is highly nonlinear when coupled with the temperature field. This leads to large reconstruction errors in existing reconstruction methods. Therefore, we improve the sparse reconstruction method for compressed sensing (CS) based on the concept of virtual time using proper orthogonal decomposition (POD). The POD-CS method links the turbulent thermal environment reconstruction with matrix decomposition to ensure computational accuracy and computational efficiency. The improved particle swarm optimization (PSO) is used to optimize the sensor arrangement to ensure stability of the reconstruction and to save sensor resources. We apply this novel and improved PSO-POD-CS coupled reconstruction method to the thermal turbulence reconstruction in the nacelle. The effects of different basis vector dimensions and different sensor location arrangements (boundary and interior) on the reconstruction errors are also evaluated separately, and finally, the desired reconstruction accuracy is obtained. The method is of research value for the reconstruction of conjugate heat transfer problems with high turbulence intensity.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"60 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory of the momentum source method for synthetic turbulence 合成湍流动量源方法理论
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0209156
Mingyu Shao, Hanbo Jiang, Shiyi Chen
{"title":"Theory of the momentum source method for synthetic turbulence","authors":"Mingyu Shao, Hanbo Jiang, Shiyi Chen","doi":"10.1063/5.0209156","DOIUrl":"https://doi.org/10.1063/5.0209156","url":null,"abstract":"The interaction between turbulence and blade leading edges is known to have a significant impact on the aerodynamic and aeroacoustic performance of propellers. In addition to directly simulating turbulence, synthetic turbulence, such as the momentum source method, has been developed as a popular method for studying this interaction process in computational fluid dynamics and computational aeroacoustics. However, it is found that for non-periodic disturbances, although the induced velocity field is divergence-free, spurious noise may be generated in the source region and contaminate simulation results. To address this issue, the present work proposes adding a correction term so that the divergence-free condition is satisfied globally and the unwanted acoustic waves are suppressed, as an extension to our previous work for time-periodic gusts [H. Jiang, Phys. Fluids 35, 096115 (2023)]. The strength of the proposed approach lies in its simplicity, flexibility, and generality. First, it derives explicit source terms, which are straightforward for numerical implementations, to generate unsteady flow fluctuations. Second, the sources can be added inside the computational domain, saving computational costs for turbulence convection and being compatible with most existing boundary conditions. Third, the proposed method can obtain analytical expressions for the needed momentum source of the Navier–Stokes equation subject to any desired isotropic or anisotropic divergence-free turbulence fields. The method has been verified by examples of synthesizing harmonic gusts, Gaussian eddies, and random turbulence. The synthetic velocity results characterized by different spectral components are directly compared to target velocity fields, verifying the proposed approach and showing its capability. Parameters that influence the distribution of added sources are systematically investigated to identify an optimal combination for different scenarios. Finally, the model is employed to evaluate the aerodynamic interaction between an incoming turbulence and a thin airfoil. The obtained results exhibit good correspondence with analytical solutions.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"35 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding droplet formation in T-shaped channels with magnetic field influence: A computational investigation 了解磁场影响下 T 型通道中液滴的形成:计算研究
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0203322
Masoomeh Darzian Kholardi, M. Farhadi
{"title":"Understanding droplet formation in T-shaped channels with magnetic field influence: A computational investigation","authors":"Masoomeh Darzian Kholardi, M. Farhadi","doi":"10.1063/5.0203322","DOIUrl":"https://doi.org/10.1063/5.0203322","url":null,"abstract":"This study investigates the production of ferrofluid droplets in a T-junction geometry using the level set method and magnetic force manipulation in the three-dimensional. The analysis reveals key insights into droplet formation processes in four stages: entering, blocking, necking, and detachment. The results show that increasing the Capillary number leads to a significant decrease in volume for non-ferrofluid droplets. Application of a magnetic force enhances the balance of forces during droplet formation, directly impacting droplet volume. Moreover, increasing the magnetic Bond number substantially increases droplet volume, with a more pronounced effect at lower Capillary numbers. Modifying magnetic properties influences droplet volume, with doubling the magnetization results in a significant volume increase. Overall, magnetic forces emerge as a crucial control parameter for droplet volume in ferrofluid systems, offering potential applications in droplet-based technologies and microfluidic devices.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"39 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrohydrodynamic deformation of a compound droplet in an alternating current and direct current superposed electric field 复合液滴在交流和直流叠加电场中的电流体动力变形
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0209008
Bikash Mohanty, Aditya Bandopadhyay
{"title":"Electrohydrodynamic deformation of a compound droplet in an alternating current and direct current superposed electric field","authors":"Bikash Mohanty, Aditya Bandopadhyay","doi":"10.1063/5.0209008","DOIUrl":"https://doi.org/10.1063/5.0209008","url":null,"abstract":"In this study of a compound droplet subjected to alternating current (AC) and direct current (DC) superposed (AC/DC) electric fields, both core and shell deformations oscillate, albeit with reduced amplitude compared to solely alternating current electric fields. As surface tension relaxes, periodic cyclic deformation ensues, with mean deformation amplifying alongside electric field amplitude. Concurrently, normal and tangential Maxwell stresses escalate with amplitude, thus augmenting interfacial surface velocities. Manipulating the offset ratio of alternating and direct current superposed electric field modulates mean deformations. Across low frequencies, stable deformation remains constant, yet a delayed onset characterizes higher frequencies. The presence of a core affects the electrohydrodynamics of the compound droplet and shell deformation, thereby mitigating phase differences between cyclic deformations. Contrasting alternating current (AC)—only fields, alternating current and direct current superposed (AC/DC) electric field scenarios exhibit heightened surface charge densities and prompter stable deformation onset. Furthermore, the direct current component magnifies mean deformations while harmonizing phase disparities between core and shell deformations. This study illuminates the intricate interplay between alternating current and direct current fields on compound droplet behavior, offering profound insight with broad implications for applications necessitating precise deformations under electric fields.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"4 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141037891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of compressibility on Richtmyer–Meshkov instability of heavy/light interface 压缩性对重质/轻质界面里氏不稳定性的影响
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0207779
Jiaxuan Li, Chenren Chen, Z. Zhai, Xisheng Luo
{"title":"Effects of compressibility on Richtmyer–Meshkov instability of heavy/light interface","authors":"Jiaxuan Li, Chenren Chen, Z. Zhai, Xisheng Luo","doi":"10.1063/5.0207779","DOIUrl":"https://doi.org/10.1063/5.0207779","url":null,"abstract":"Experimental and numerical studies on the evolution of shock-accelerated SF6/air interface with small initial amplitude are conducted. The effect of compressibility on the early development of perturbation is highlighted by varying shock intensity and fluid properties. The startup process is analyzed when rarefaction waves are reflected and the characteristic time of the startup process is provided. The relationship between the phase inversion process and the startup process under different incident shock strengths is clarified. According to the startup time, a new start point for normalization is given, which can better normalize the amplitude growth at the early stage. In addition, the effects of incident shock strength and physical properties of fluids on the linear growth rate are highlighted through numerical simulations. The incompressible linear model loses validity when the incident shock is strong, and the existing rotational model is verified to provide excellent predictions under any shock strengths. The decrease in adiabatic exponent of the heavy fluid or the increase in adiabatic exponent of the light fluid can reduce the linear growth rate. As the absolute value of Atwood number increases, the adiabatic exponent of the heavy fluid has a more significant effect on the linear growth than that of the light fluid.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"15 S3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141046946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data-driven learning algorithm to predict full-field aerodynamics of large structures subject to crosswinds 预测受横风影响的大型结构全场空气动力学的数据驱动学习算法
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0197178
Xianjia Chen, Bo Yin, Zheng Yuan, Guowei Yang, Qiang Li, Shouguang Sun, Yujie Wei
{"title":"Data-driven learning algorithm to predict full-field aerodynamics of large structures subject to crosswinds","authors":"Xianjia Chen, Bo Yin, Zheng Yuan, Guowei Yang, Qiang Li, Shouguang Sun, Yujie Wei","doi":"10.1063/5.0197178","DOIUrl":"https://doi.org/10.1063/5.0197178","url":null,"abstract":"Quick and high-fidelity updates about aerodynamic loads of large-scale structures, from trains, planes, and automobiles to many civil infrastructures, serving under the influence of a broad range of crosswinds are of practical significance for their design and in-use safety assessment. Herein, we demonstrate that data-driven machine learning (ML) modeling, in combination with conventional computational methods, can fulfill the goal of fast yet faithful aerodynamic prediction for moving objects subject to crosswinds. Taking a full-scale high-speed train, we illustrate that our data-driven model, trained with a small amount of data from simulations, can readily predict with high fidelity pressure and viscous stress distributions on the train surface in a wide span of operating speed and crosswind velocity. By exploring the dependence of aerodynamic coefficients on yaw angles from ML-based predictions, a rapid update of aerodynamic forces is realized, which can be effectively generalized to trains operating at higher speed levels and subject to harsher crosswinds. The method introduced here paves the way for high-fidelity yet efficient predictions to capture the aerodynamics of engineering structures and facilitates their safety assessment with enormous economic and social significance.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"64 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141049096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Piston problem for the pressureless hydrodynamic traffic flow model 无压水动力交通流模型的活塞问题
Physics of Fluids Pub Date : 2024-05-01 DOI: 10.1063/5.0207364
Zhengqi Wang, Lihui Guo, Zhijian Wei
{"title":"Piston problem for the pressureless hydrodynamic traffic flow model","authors":"Zhengqi Wang, Lihui Guo, Zhijian Wei","doi":"10.1063/5.0207364","DOIUrl":"https://doi.org/10.1063/5.0207364","url":null,"abstract":"The hydrodynamic model can be used to describe traffic problems in transport. When the speed of the first car is less than the speed behind it, it leads to traffic jams. When the first car's speed is faster than the cars behind it, it leads to traffic evacuation. If we consider the first car to be a piston, then the speed of the piston will cause traffic jams and traffic evacuation. In this paper, we study the piston problem for the hydrodynamic model. The formation and propagation of shock wave, rarefaction wave, delta-shock wave, and vacuum can describe the phenomena of traffic jams, traffic evacuation, severe traffic jams, and traffic evacuation with traffic volume of zero, respectively. Therefore, for different traffic phenomena, we prove the existence of shock solution, rarefaction solution, delta shock solution, and vacuum solution. In addition, we perform some representative numerical simulations.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"197 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信