Electrohydrodynamic deformation of a compound droplet in an alternating current and direct current superposed electric field

Bikash Mohanty, Aditya Bandopadhyay
{"title":"Electrohydrodynamic deformation of a compound droplet in an alternating current and direct current superposed electric field","authors":"Bikash Mohanty, Aditya Bandopadhyay","doi":"10.1063/5.0209008","DOIUrl":null,"url":null,"abstract":"In this study of a compound droplet subjected to alternating current (AC) and direct current (DC) superposed (AC/DC) electric fields, both core and shell deformations oscillate, albeit with reduced amplitude compared to solely alternating current electric fields. As surface tension relaxes, periodic cyclic deformation ensues, with mean deformation amplifying alongside electric field amplitude. Concurrently, normal and tangential Maxwell stresses escalate with amplitude, thus augmenting interfacial surface velocities. Manipulating the offset ratio of alternating and direct current superposed electric field modulates mean deformations. Across low frequencies, stable deformation remains constant, yet a delayed onset characterizes higher frequencies. The presence of a core affects the electrohydrodynamics of the compound droplet and shell deformation, thereby mitigating phase differences between cyclic deformations. Contrasting alternating current (AC)—only fields, alternating current and direct current superposed (AC/DC) electric field scenarios exhibit heightened surface charge densities and prompter stable deformation onset. Furthermore, the direct current component magnifies mean deformations while harmonizing phase disparities between core and shell deformations. This study illuminates the intricate interplay between alternating current and direct current fields on compound droplet behavior, offering profound insight with broad implications for applications necessitating precise deformations under electric fields.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0209008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study of a compound droplet subjected to alternating current (AC) and direct current (DC) superposed (AC/DC) electric fields, both core and shell deformations oscillate, albeit with reduced amplitude compared to solely alternating current electric fields. As surface tension relaxes, periodic cyclic deformation ensues, with mean deformation amplifying alongside electric field amplitude. Concurrently, normal and tangential Maxwell stresses escalate with amplitude, thus augmenting interfacial surface velocities. Manipulating the offset ratio of alternating and direct current superposed electric field modulates mean deformations. Across low frequencies, stable deformation remains constant, yet a delayed onset characterizes higher frequencies. The presence of a core affects the electrohydrodynamics of the compound droplet and shell deformation, thereby mitigating phase differences between cyclic deformations. Contrasting alternating current (AC)—only fields, alternating current and direct current superposed (AC/DC) electric field scenarios exhibit heightened surface charge densities and prompter stable deformation onset. Furthermore, the direct current component magnifies mean deformations while harmonizing phase disparities between core and shell deformations. This study illuminates the intricate interplay between alternating current and direct current fields on compound droplet behavior, offering profound insight with broad implications for applications necessitating precise deformations under electric fields.
复合液滴在交流和直流叠加电场中的电流体动力变形
本研究对受到交流(AC)和直流(DC)叠加(AC/DC)电场作用的复合液滴进行了研究,结果发现,液滴的内核和外壳都会发生振荡变形,尽管与单纯的交流电场相比振幅有所减小。随着表面张力的松弛,周期性的循环变形随之产生,平均变形随着电场振幅的增大而增大。同时,法向和切向麦斯韦尔应力也随振幅增加,从而提高了界面表面速度。操纵交流和直流叠加电场的偏移比可调节平均变形。在低频情况下,稳定变形保持不变,但在高频情况下,变形会延迟发生。核心的存在会影响复合液滴和外壳变形的电流体力学,从而减轻周期变形之间的相位差。与纯交流电场不同,交流电和直流电叠加(AC/DC)电场情况下的表面电荷密度更高,变形开始得更快更稳定。此外,直流电成分还能放大平均变形,同时协调核心和外壳变形之间的相位差。这项研究揭示了交流电场和直流电场对复合液滴行为的复杂相互作用,为需要在电场下精确变形的应用提供了深刻的见解和广泛的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信