Pankaj Das, C. Elléouet, F. Pétillon, P. Schollhammer
{"title":"Aza-Diphosphido-Bridged Di-Iron Complexes Related to the [FeFe]-Hydrogenases","authors":"Pankaj Das, C. Elléouet, F. Pétillon, P. Schollhammer","doi":"10.3390/m1797","DOIUrl":"https://doi.org/10.3390/m1797","url":null,"abstract":"The reaction of the dianionic species [Fe2(CO)6(μ-PPh)2]2− with tBuN(CH2Cl)2 gives the di-iron carbonyl aza-diphosphido-bridged complex [Fe2(CO)6(µ-{P(Ph)CH2}2NtBu)] (1). Attempts to prepare 1 by click-chemistry by reacting [Fe2(CO)6(μ-PHPh)2] with CH2O and tBuNH2 afforded a bis-phosphido compound [Fe2(CO)6(µ-P(Ph)CH2NHtBu)2] (2) which exists as two, syn and anti, isolable isomers depending on the relative orientation of the groups carried by the phosphorus atoms. In the presence of HBF4.Et2O, in dichloromethane, 1 leads to the stabilized ammonium species [Fe2(CO)6(µ-{P(Ph)CH2}2NHtBu)](BF4) (3). The derivatives 1–3 were characterized by IR and 1H, 31P-{1H} NMR spectroscopies. Their structures in a solid state were determined by X-ray diffraction analyses, which accord with their spectroscopic characteristics.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":" 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140384119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Deiby F. Aparicio Acevedo, Marlyn C. Ortiz Villamizar, V. Kouznetsov
{"title":"Three-Step Synthesis of N-(7-chloro-4-morpholinoquinolin-2-yl)benzamide from 4,7-Dichloroquinoline","authors":"Deiby F. Aparicio Acevedo, Marlyn C. Ortiz Villamizar, V. Kouznetsov","doi":"10.3390/m1796","DOIUrl":"https://doi.org/10.3390/m1796","url":null,"abstract":"The quinoline derivative, N-(7-chloro-4-morpholinoquinolin-2-yl)benzamide, was synthesized in a conventional three-step procedure from 4,7-dichloroquinoline using a N-oxidation reaction/C2-amide formation reaction/C4 SNAr reaction sequence. The structure of the compound was fully characterized by FT-IR, 1H-, 13C-NMR, DEPT-135°, and ESI-MS techniques. Its physicochemical parameters (Lipinski’s descriptors) were also calculated using the online SwissADME database. Such derivatives are relevant therapeutic agents exhibiting potent anticancer, antibacterial, antifungal, and antiparasitic properties.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140220877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paul R. Palme, Richard Goddard, P. Imming, R. W. Seidel
{"title":"Structural Characterization of 4-(4-Nitrophenyl)thiomorpholine, a Precursor in Medicinal Chemistry","authors":"Paul R. Palme, Richard Goddard, P. Imming, R. W. Seidel","doi":"10.3390/m1795","DOIUrl":"https://doi.org/10.3390/m1795","url":null,"abstract":"4-(4-nitrophenyl)thiomorpholine, the title compound, has been used as a precursor for the corresponding 4-thiomorpholinoaniline, which is a useful building block in medicinal chemistry. The crystal and molecular structures of the title compound, however, have not been described thus far. We synthesized the title compound by means of a nucleophilic aromatic substitution reaction of 4-fluoronitrobenzene and thiomorpholine and structurally characterized it by X-ray crystallography, DFT calculations, and Hirshfeld surface analysis. In the crystal, the molecule exhibits an approximately CS-symmetric structure, with the nitrogen-bound 4-nitrophenyl group in a quasi axial position on the six-membered thiomorpholine ring in a low-energy chair conformation. The solid-state structure of the title compound is markedly different from that of its morpholine analogue. This can be ascribed to the formation of centrosymmetric dimers through intermolecular C–H···O weak hydrogen bonds involving the methylene groups adjacent to the sulfur atom and face-to-face aromatic stacking.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"109 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140224865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Butyl (2,2-Dibutoxybutanoyl)-ʟ-Tryptophanate","authors":"Diego Quiroga, E. Coy-Barrera","doi":"10.3390/m1794","DOIUrl":"https://doi.org/10.3390/m1794","url":null,"abstract":"The multicomponent reaction between ʟ-tryptophan 1, 2-oxobutanoic acid 2, and 1-butanol in the presence of SiMe3Cl was studied using microwave irradiation conditions. The main product was identified as an unreported acetal-containing compound, namely, butyl (2,2-dibutoxybutanoyl)-ʟ-tryptophanate (3), yielding 89%. NMR experiments demonstrated that the adjacent methylene protons of the acetal group appeared as two signals exhibiting their behavior as diastereotopic protons. DFT/B3LYP calculations revealed an asymmetric molecular structure with specific angles, leading to an explanation of the NMR results. The calculated chemical shifts showed slight differences with the experimental values and suggested magnetic anisotropy and inductive deprotection around the methylene hydrogen atoms in the acetal location. The reaction mechanism was proposed in which SiMe3Cl plays a crucial role by promoting water removal through key steps.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"129 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140228189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phelelisiwe S. Dube, Dylan Hart, L. Legoabe, Audrey Jordaan, D. Warner, Richard M. Beteck
{"title":"Synthesis and In Vitro Antibacterial Evaluation of Mannich Base Nitrothiazole Derivatives","authors":"Phelelisiwe S. Dube, Dylan Hart, L. Legoabe, Audrey Jordaan, D. Warner, Richard M. Beteck","doi":"10.3390/m1793","DOIUrl":"https://doi.org/10.3390/m1793","url":null,"abstract":"Nitrothiazole derivatives have been reported to exhibit activity against aerobic, anaerobic, and microaerophilic bacteria. This activity profile makes the nitrothiazole compound class an ideal lead source against Mycobacterium tuberculosis, which flourishes in varied environments with different oxygen concentrations. In this work, we investigated six nitrothiazole derivatives for antitubercular activity. The compounds exhibited potent activity, with compounds 9 and 10 possessing an equipotent MIC90 value of 0.24 µM. The compounds were investigated for cytotoxicity against HEK293 cells and hemolysis against red blood cells, and they demonstrated no cytotoxicity nor hemolytic effects, suggesting they possess inherent antitubercular activity.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"36 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140231544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"5-(9-(p-Tolyl)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazol-6-yl)thiophene-2-carbaldehyde","authors":"N. Gudim, E. Knyazeva, O. Rakitin","doi":"10.3390/m1792","DOIUrl":"https://doi.org/10.3390/m1792","url":null,"abstract":"Donor–π spacer–acceptor (D–π–A) dyes are among the most attractive structures for the design of organic dye-sensitized solar cells (DSSCs). Typically, the key intermediates for these sensitizers are D–π compounds containing an aldehyde group to which an anchor acceptor group is attached via the Knoevenagel reaction. In this communication, 5-(9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-1,4-methanocarbazol-6-yl)thiophene-2-carbaldehyde was prepared via the Suzuki cross-coupling reaction. The structure of the newly synthesized compound was established by means of high-resolution mass spectrometry, 1H NMR, 13C NMR, IR, and UV–Vis spectroscopy. The title compound would be used in the synthesis of sensitizers for DSSCs.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"102 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140242544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"1-(3,4-Dimethoxyphenyl)-3-(4-methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one","authors":"Anna Nacher-Luis, Isidro M. Pastor","doi":"10.3390/m1791","DOIUrl":"https://doi.org/10.3390/m1791","url":null,"abstract":"The study of new catalytic protocols for the synthesis of organic compounds with a more sustainable perspective is of interest. The use of ionic organic solids, such as 1,3-bis(carboxymethyl)imidazolium chloride as a catalyst has allowed the Michael addition of N-heterocycles to chalcones. This methodology has been applied to the unique preparation of the potential bioactive compound 1-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)propan-1-one with moderate yield, due to the retro-Michael reaction. Both synthetic reactions (i.e., preparation of chalcone and triazole Michael-addition to chalcone) have good green metrics.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"8 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140248743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bakr F. Abdel-Wahab, H. Mohamed, Benson M. Kariuki, Gamal A. El-Hiti
{"title":"1-(2,4-Dinitrophenyl)-2-((Z)-2-((E)-4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-ylidene)hydrazine","authors":"Bakr F. Abdel-Wahab, H. Mohamed, Benson M. Kariuki, Gamal A. El-Hiti","doi":"10.3390/m1789","DOIUrl":"https://doi.org/10.3390/m1789","url":null,"abstract":"The reaction of (E)-2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-one and (2,4-dinitrophenyl)hydrazine in boiling ethanol containing hydrochloric acid (0.2 mL; 37%) for 1.5 h gave 1-(2,4-dinitrophenyl)-2-(2-(4-fluorobenzylidene)-3,4-dihydronaphthalen-1(2H)-ylidene)hydrazine in a 90% yield. Various spectral analyses, including NMR, and X-ray crystallography established the structure of the newly synthesized hydrazone.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"13 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140254519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bakr F. Abdel-Wahab, H. Mohamed, Benson M. Kariuki, Gamal A. El-Hiti
{"title":"(E)-1-(1-(Benzofuran-2-yl)ethylidene)-2-(2,4,6-trichlorophenyl)hydrazine","authors":"Bakr F. Abdel-Wahab, H. Mohamed, Benson M. Kariuki, Gamal A. El-Hiti","doi":"10.3390/m1790","DOIUrl":"https://doi.org/10.3390/m1790","url":null,"abstract":"The reaction of a mixture of equimolar quantities of 2-acetylbenzofuran and (2,4,6-trichlorophenyl)hydrazine in ethanol containing concentrated hydrochloric acid (0.2 mL; 37%) as a catalyst under reflux for two hours yielded 1-(1-(benzofuran-2-yl)ethylidene)-2-(2,4,6-trichlorophenyl)hydrazine. The crude product was purified by crystallization using dimethylformamide to provide the title heterocycle in a 90% yield. The structure of the new heterocycle was confirmed through X-ray diffraction and spectral analyses.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"27 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140252718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Shetnev, J. A. Efimova, Mikhail K. Korsakov, A. Petzer, J. Petzer
{"title":"Synthesis and Monoamine Oxidase Inhibition Properties of 4-(2-Methyloxazol-4-yl)benzenesulfonamide","authors":"A. Shetnev, J. A. Efimova, Mikhail K. Korsakov, A. Petzer, J. Petzer","doi":"10.3390/m1787","DOIUrl":"https://doi.org/10.3390/m1787","url":null,"abstract":"4-(2-Methyloxazol-4-yl)benzenesulfonamide was synthesized by the reaction of 4-(2-bromoacetyl)benzenesulfonamide with an excess of acetamide. The compound was evaluated as a potential inhibitor of human monoamine oxidase (MAO) A and B and was found to inhibit these enzymes with IC50 values of 43.3 and 3.47 μM, respectively. The potential binding orientation and interactions of the inhibitor with MAO-B were examined by molecular docking, and it was found that the sulfonamide group binds and interacts with residues of the substrate cavity. 4-(2-Methyloxazol-4-yl)benzenesulfonamide showed no cytotoxic effect against human stromal bone cell line (HS-5) in the concentration range of 1–100 µmol. Thus, the new selective MAO-B inhibitor was identified, which may be used as the lead compound for the development of antiparkinsonian agents.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140262228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}