A. Shetnev, J. A. Efimova, Mikhail K. Korsakov, A. Petzer, J. Petzer
{"title":"Synthesis and Monoamine Oxidase Inhibition Properties of 4-(2-Methyloxazol-4-yl)benzenesulfonamide","authors":"A. Shetnev, J. A. Efimova, Mikhail K. Korsakov, A. Petzer, J. Petzer","doi":"10.3390/m1787","DOIUrl":null,"url":null,"abstract":"4-(2-Methyloxazol-4-yl)benzenesulfonamide was synthesized by the reaction of 4-(2-bromoacetyl)benzenesulfonamide with an excess of acetamide. The compound was evaluated as a potential inhibitor of human monoamine oxidase (MAO) A and B and was found to inhibit these enzymes with IC50 values of 43.3 and 3.47 μM, respectively. The potential binding orientation and interactions of the inhibitor with MAO-B were examined by molecular docking, and it was found that the sulfonamide group binds and interacts with residues of the substrate cavity. 4-(2-Methyloxazol-4-yl)benzenesulfonamide showed no cytotoxic effect against human stromal bone cell line (HS-5) in the concentration range of 1–100 µmol. Thus, the new selective MAO-B inhibitor was identified, which may be used as the lead compound for the development of antiparkinsonian agents.","PeriodicalId":509184,"journal":{"name":"Molbank","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molbank","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/m1787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
4-(2-Methyloxazol-4-yl)benzenesulfonamide was synthesized by the reaction of 4-(2-bromoacetyl)benzenesulfonamide with an excess of acetamide. The compound was evaluated as a potential inhibitor of human monoamine oxidase (MAO) A and B and was found to inhibit these enzymes with IC50 values of 43.3 and 3.47 μM, respectively. The potential binding orientation and interactions of the inhibitor with MAO-B were examined by molecular docking, and it was found that the sulfonamide group binds and interacts with residues of the substrate cavity. 4-(2-Methyloxazol-4-yl)benzenesulfonamide showed no cytotoxic effect against human stromal bone cell line (HS-5) in the concentration range of 1–100 µmol. Thus, the new selective MAO-B inhibitor was identified, which may be used as the lead compound for the development of antiparkinsonian agents.