The Aeronautical Journal最新文献

筛选
英文 中文
Development of a design space for dissimilar materials joining in aerospace applications 开发航空航天应用中异种材料连接的设计空间
The Aeronautical Journal Pub Date : 2023-11-29 DOI: 10.1017/aer.2023.109
S. Ahmad Khan, H. Liaqat, F. Akram, H. Ali Khan
{"title":"Development of a design space for dissimilar materials joining in aerospace applications","authors":"S. Ahmad Khan, H. Liaqat, F. Akram, H. Ali Khan","doi":"10.1017/aer.2023.109","DOIUrl":"https://doi.org/10.1017/aer.2023.109","url":null,"abstract":"This research paper presents an application of the integrated process and product design (IPPD) approach for selecting the best joint configuration for dissimilar material joining in the early product design phase. The proposed methodology integrates the multi-criteria decision making (MCDM) approach with quality function deployment (QFD) to identify the key criteria for joint selection, including load-carrying capacity, size, cost per joint, ease of manufacturing, time consumption and deformation. Three types of joints (rivet, weld and adhesive) and two hybrid joints (adhesive-weld and adhesive-rivet) are considered for three dissimilar material configurations: carbon fiber-reinforced plastic (CFRP) aluminum, CFRP steel, and aluminum-steel. QFD is utilised to transform job requirements into design criteria, and in the second phase, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is employed to choose the optimal joint configuration based on the weighted criteria acquired in the previous phase. The selected joint configuration is then validated through experimental study. The findings demonstrate that the proposed IPPD approach with QFD-TOPSIS techniques is highly effective for selecting mechanical joints for dissimilar material joining in the early design phase. The study concludes that the adhesive-rivet hybrid joint is the optimal solution among all alternatives. The proposed methodology can ultimately lead to improved product reliability and performance, as well as reduced development time and cost.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"113 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal management system design for a series hybrid-electric propulsion architecture 串联式混合电力推进结构的热管理系统设计
The Aeronautical Journal Pub Date : 2023-11-29 DOI: 10.1017/aer.2023.111
M. Potamiti, V. Gkoutzamanis, A. Kalfas
{"title":"Thermal management system design for a series hybrid-electric propulsion architecture","authors":"M. Potamiti, V. Gkoutzamanis, A. Kalfas","doi":"10.1017/aer.2023.111","DOIUrl":"https://doi.org/10.1017/aer.2023.111","url":null,"abstract":"The current paper is focused on the conceptual design of a thermal management system with a liquid working medium for a commuter hybrid-electric aircraft, featuring a series propulsion configuration. Regarding the system’s architecture, parametric analyses are conducted, by altering the number of heat exchangers. To clarify, a centralised and a decentralised thermal management system architecture are examined. Furthermore, a computational model calculates the temperatures during the system’s operation and the required coolant mass flows to sufficiently cool all the compartments. Subsequently, the required heat exchanger surface is determined and the weight of each compartment that comprises the thermal management system can be calculated. It is worth noting, that the compartments’ cold plate weight is integrated. The results indicate that the decentralised configuration results in lower temperature fields for all components compared to the centralised configuration. However, the latter weighs 32.2% lower at 158.22kg while the decentralised configuration weighs 233.48kg.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bespoke stability analysis tool in next-generation computational fluid dynamics solver 新一代计算流体力学求解器中的定制稳定性分析工具
The Aeronautical Journal Pub Date : 2023-11-23 DOI: 10.1017/aer.2023.108
U. S. Vevek, J. Houtman, S. Timme
{"title":"Bespoke stability analysis tool in next-generation computational fluid dynamics solver","authors":"U. S. Vevek, J. Houtman, S. Timme","doi":"10.1017/aer.2023.108","DOIUrl":"https://doi.org/10.1017/aer.2023.108","url":null,"abstract":"This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical results computed using the TAU code and those reported in the literature. It has been applied with both second-order finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter computation time compared to using second-order schemes on finer grids.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"116 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139244509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信