新一代计算流体力学求解器中的定制稳定性分析工具

U. S. Vevek, J. Houtman, S. Timme
{"title":"新一代计算流体力学求解器中的定制稳定性分析工具","authors":"U. S. Vevek, J. Houtman, S. Timme","doi":"10.1017/aer.2023.108","DOIUrl":null,"url":null,"abstract":"This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical results computed using the TAU code and those reported in the literature. It has been applied with both second-order finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter computation time compared to using second-order schemes on finer grids.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"116 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bespoke stability analysis tool in next-generation computational fluid dynamics solver\",\"authors\":\"U. S. Vevek, J. Houtman, S. Timme\",\"doi\":\"10.1017/aer.2023.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical results computed using the TAU code and those reported in the literature. It has been applied with both second-order finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter computation time compared to using second-order schemes on finer grids.\",\"PeriodicalId\":508971,\"journal\":{\"name\":\"The Aeronautical Journal\",\"volume\":\"116 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了使用最近在下一代流动求解器框架 CODA 中实施的定制求解器进行全局线性稳定性分析的部分首批结果。该求解器得益于 CODA 的自动微分功能,可以计算雅各布矩阵与任意复向量的精确乘积。它采用 Krylov-Schur 算法解决特征值问题。在层流流过圆柱体的情况下,使用 TAU 代码计算的数值结果和文献报道的结果对定制工具进行了验证。在层流流过方形圆柱体的情况下,它还与二阶有限体积和高阶非连续 Galerkin 方案结合使用。结果表明,与在较细网格上使用二阶方案相比,在较粗网格上使用高阶方案可以获得很好融合的特征模式,并且计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bespoke stability analysis tool in next-generation computational fluid dynamics solver
This paper presents some of the first results of global linear stability analyses performed using a bespoke eigensolver that has recently been implemented in the next generation flow solver framework CODA. The eigensolver benefits from the automatic differentiation capability of CODA that allows computation of the exact product of the Jacobian matrix with an arbitrary complex vector. It implements the Krylov–Schur algorithm for solving the eigenvalue problem. The bespoke tool has been validated for the case of laminar flow past a circular cylinder with numerical results computed using the TAU code and those reported in the literature. It has been applied with both second-order finite volume and high-order discontinuous Galerkin schemes for the case of laminar flow past a square cylinder. It has been demonstrated that using high-order schemes on coarser grids leads to well-converged eigenmodes with a shorter computation time compared to using second-order schemes on finer grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信