Thermal management system design for a series hybrid-electric propulsion architecture

M. Potamiti, V. Gkoutzamanis, A. Kalfas
{"title":"Thermal management system design for a series hybrid-electric propulsion architecture","authors":"M. Potamiti, V. Gkoutzamanis, A. Kalfas","doi":"10.1017/aer.2023.111","DOIUrl":null,"url":null,"abstract":"The current paper is focused on the conceptual design of a thermal management system with a liquid working medium for a commuter hybrid-electric aircraft, featuring a series propulsion configuration. Regarding the system’s architecture, parametric analyses are conducted, by altering the number of heat exchangers. To clarify, a centralised and a decentralised thermal management system architecture are examined. Furthermore, a computational model calculates the temperatures during the system’s operation and the required coolant mass flows to sufficiently cool all the compartments. Subsequently, the required heat exchanger surface is determined and the weight of each compartment that comprises the thermal management system can be calculated. It is worth noting, that the compartments’ cold plate weight is integrated. The results indicate that the decentralised configuration results in lower temperature fields for all components compared to the centralised configuration. However, the latter weighs 32.2% lower at 158.22kg while the decentralised configuration weighs 233.48kg.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current paper is focused on the conceptual design of a thermal management system with a liquid working medium for a commuter hybrid-electric aircraft, featuring a series propulsion configuration. Regarding the system’s architecture, parametric analyses are conducted, by altering the number of heat exchangers. To clarify, a centralised and a decentralised thermal management system architecture are examined. Furthermore, a computational model calculates the temperatures during the system’s operation and the required coolant mass flows to sufficiently cool all the compartments. Subsequently, the required heat exchanger surface is determined and the weight of each compartment that comprises the thermal management system can be calculated. It is worth noting, that the compartments’ cold plate weight is integrated. The results indicate that the decentralised configuration results in lower temperature fields for all components compared to the centralised configuration. However, the latter weighs 32.2% lower at 158.22kg while the decentralised configuration weighs 233.48kg.
串联式混合电力推进结构的热管理系统设计
本论文的重点是为采用串联推进配置的混合动力电动通勤飞机设计一套带有液体工作介质的热管理系统。通过改变热交换器的数量,对系统的结构进行了参数分析。此外,还对集中式和分散式热管理系统结构进行了研究。此外,计算模型还计算了系统运行期间的温度,以及充分冷却所有隔间所需的冷却剂质量流量。随后,就可以确定所需的热交换器表面,并计算出组成热管理系统的每个隔室的重量。值得注意的是,隔室的冷板重量是综合计算的。结果表明,与集中式配置相比,分散式配置可降低所有组件的温度场。不过,后者的重量比集中式配置低 32.2%,为 158.22 千克,而分散式配置的重量为 233.48 千克。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信