{"title":"Constructions of mismatched binary periodic complementary pairs","authors":"Lina Shi, Ruibin Ren, Yang Yang","doi":"10.3934/amc.2023006","DOIUrl":"https://doi.org/10.3934/amc.2023006","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"94 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73053738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On some codes from rank 3 primitive actions of the simple Chevalley group $ G_2(q) $","authors":"Tung Le, B. Rodrigues","doi":"10.3934/amc.2022016","DOIUrl":"https://doi.org/10.3934/amc.2022016","url":null,"abstract":"<p style='text-indent:20px;'>Let <inline-formula><tex-math id=\"M2\">begin{document}$ G_2(q) $end{document}</tex-math></inline-formula> be a Chevalley group of type <inline-formula><tex-math id=\"M3\">begin{document}$ G_2 $end{document}</tex-math></inline-formula> over a finite field <inline-formula><tex-math id=\"M4\">begin{document}$ mathbb{F}_q $end{document}</tex-math></inline-formula>. Considering the <inline-formula><tex-math id=\"M5\">begin{document}$ G_2(q) $end{document}</tex-math></inline-formula>-primitive action of rank <inline-formula><tex-math id=\"M6\">begin{document}$ 3 $end{document}</tex-math></inline-formula> on the set of <inline-formula><tex-math id=\"M7\">begin{document}$ frac{q^3(q^3-1)}{2} $end{document}</tex-math></inline-formula> hyperplanes of type <inline-formula><tex-math id=\"M8\">begin{document}$ O_{6}^{-}(q) $end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id=\"M9\">begin{document}$ 7 $end{document}</tex-math></inline-formula>-dimensional orthogonal space <inline-formula><tex-math id=\"M10\">begin{document}$ {{rm{PG}}}(7, q) $end{document}</tex-math></inline-formula>, we study the designs, codes, and some related geometric structures. We obtained the main parameters of the codes, the full automorphism groups of these structures, and geometric descriptions of the classes of minimum weight codewords.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"52 1","pages":"207-226"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81289202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new class of optimal wide-gap one-coincidence frequency-hopping sequence sets","authors":"Wenli Ren, Feng Wang","doi":"10.3934/AMC.2020131","DOIUrl":"https://doi.org/10.3934/AMC.2020131","url":null,"abstract":"In this paper, we propose a new class of optimal one-coincidence FHS (OC-FHS) sets with respect to the Peng-Fan bounds, including prime sequence sets and HMC sequence sets as special cases. Thereafter, through investigating their properties, we determine all of the FHS distances in the OC-FHS set. Finally, for a given positive integer, we also propose a new class of wide-gap one-coincidence FHS (WG-OC-FHS) sets where the FHS gap is larger than the given positive integer. Moreover, such a WG-OC-FHS set is optimal with respect to the WG-Lempel-Greenberger bound and the WG-Peng-Fan bounds simultaneously.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"9 1","pages":"342-352"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73884356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient keyword search on encrypted dynamic cloud data","authors":"Laltu Sardar, Binanda Sengupta, S. Ruj","doi":"10.3934/amc.2022101","DOIUrl":"https://doi.org/10.3934/amc.2022101","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"23 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76036087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parameters of some BCH codes over $ mathbb{F}_q $ of length $ frac{q^m-1}{2} $","authors":"Liqi Wang, Di Lu, Shixin Zhu","doi":"10.3934/amc.2023007","DOIUrl":"https://doi.org/10.3934/amc.2023007","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"6 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73165496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonexistence of some four dimensional linear codes attaining the Griesmer bound","authors":"W. Ma, Jinquan Luo","doi":"10.3934/amc.2023024","DOIUrl":"https://doi.org/10.3934/amc.2023024","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"17 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82638415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo
{"title":"Two pointsets in $ mathrm{PG}(2,q^n) $ and the associated codes","authors":"V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo","doi":"10.3934/amc.2022006","DOIUrl":"https://doi.org/10.3934/amc.2022006","url":null,"abstract":"<p style='text-indent:20px;'>In this paper we consider two pointsets in <inline-formula><tex-math id=\"M2\">begin{document}$ mathrm{PG}(2,q^n) $end{document}</tex-math></inline-formula> arising from a linear set <inline-formula><tex-math id=\"M3\">begin{document}$ L $end{document}</tex-math></inline-formula> of rank <inline-formula><tex-math id=\"M4\">begin{document}$ n $end{document}</tex-math></inline-formula> contained in a line of <inline-formula><tex-math id=\"M5\">begin{document}$ mathrm{PG}(2,q^n) $end{document}</tex-math></inline-formula>: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set <inline-formula><tex-math id=\"M6\">begin{document}$ L $end{document}</tex-math></inline-formula>. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing <inline-formula><tex-math id=\"M7\">begin{document}$ L $end{document}</tex-math></inline-formula> to be an <inline-formula><tex-math id=\"M8\">begin{document}$ {mathbb F}_{q} $end{document}</tex-math></inline-formula>-linear set with a <i>short</i> weight distribution, then the associated codes have <i>few weights</i>. We conclude the paper by providing a connection between the <inline-formula><tex-math id=\"M9\">begin{document}$ Gammamathrm{L} $end{document}</tex-math></inline-formula>-class of <inline-formula><tex-math id=\"M10\">begin{document}$ L $end{document}</tex-math></inline-formula> and the number of inequivalent codes we can construct starting from it.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"114 1","pages":"227-245"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77722569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Asymptotically good generalized quasi-cyclic codes over finite chain rings","authors":"Xiangrui Meng, Jian Gao, Fang-Wei Fu","doi":"10.3934/amc.2023034","DOIUrl":"https://doi.org/10.3934/amc.2023034","url":null,"abstract":"In this paper, we construct a class of generalized quasi-cyclic (GQC) codes with index $ ell $ over finite chain rings. Based on probabilistic arguments, we discuss asymptotic rates and relative distances of this class of codes. As a result, we show that GQC codes with index $ ell $ over finite chain rings are asymptotically good.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"109 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135699007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fractional non-norm elements for division algebras, and an application to Cyclic Learning with Errors","authors":"Andrew Mendelsohn, Cong Ling","doi":"10.3934/amc.2023043","DOIUrl":"https://doi.org/10.3934/amc.2023043","url":null,"abstract":"Given a cyclotomic field $ K $ and a finite Galois extension $ L $, we discuss the construction of unit-magnitude elements in $ K $ which are not in the image of the field norm map $ N_{L/K}(L^times) $. We observe that the construction of Elia, Sethuraman, and Kumar extends to all cyclotomic fields whose rings of integers are a principal ideal domain, a fact we have not seen appear elsewhere in the literature. We then prove a number of lemmas concerning non-norm elements, and extend the above results to hold for arbitrary cyclotomic ground fields. We give examples of towers of fields and corresponding non-norm elements in both instances. Finally, we apply this to cryptography, defining a novel variant of Learning with Errors, defined over cyclic division algebras with fractional unit-magnitude non-norm elements, and reduce lattice problems defined over ideals in maximal orders in such algebras to the search problem for this form of LWE.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135212418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dualities for codes over finite Abelian groups","authors":"S. Dougherty","doi":"10.3934/amc.2023023","DOIUrl":"https://doi.org/10.3934/amc.2023023","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"18 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73590351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}