Two pointsets in $ \mathrm{PG}(2,q^n) $ and the associated codes

IF 0.7 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo
{"title":"Two pointsets in $ \\mathrm{PG}(2,q^n) $ and the associated codes","authors":"V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo","doi":"10.3934/amc.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper we consider two pointsets in <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathrm{PG}(2,q^n) $\\end{document}</tex-math></inline-formula> arising from a linear set <inline-formula><tex-math id=\"M3\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> of rank <inline-formula><tex-math id=\"M4\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> contained in a line of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathrm{PG}(2,q^n) $\\end{document}</tex-math></inline-formula>: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set <inline-formula><tex-math id=\"M6\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula>. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing <inline-formula><tex-math id=\"M7\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> to be an <inline-formula><tex-math id=\"M8\">\\begin{document}$ {\\mathbb F}_{q} $\\end{document}</tex-math></inline-formula>-linear set with a <i>short</i> weight distribution, then the associated codes have <i>few weights</i>. We conclude the paper by providing a connection between the <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\Gamma\\mathrm{L} $\\end{document}</tex-math></inline-formula>-class of <inline-formula><tex-math id=\"M10\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> and the number of inequivalent codes we can construct starting from it.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"114 1","pages":"227-245"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2022006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we consider two pointsets in \begin{document}$ \mathrm{PG}(2,q^n) $\end{document} arising from a linear set \begin{document}$ L $\end{document} of rank \begin{document}$ n $\end{document} contained in a line of \begin{document}$ \mathrm{PG}(2,q^n) $\end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set \begin{document}$ L $\end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing \begin{document}$ L $\end{document} to be an \begin{document}$ {\mathbb F}_{q} $\end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the \begin{document}$ \Gamma\mathrm{L} $\end{document}-class of \begin{document}$ L $\end{document} and the number of inequivalent codes we can construct starting from it.

$ \ mathm {PG}(2,q^n) $中的两个点集及其相关代码
In this paper we consider two pointsets in \begin{document}$ \mathrm{PG}(2,q^n) $\end{document} arising from a linear set \begin{document}$ L $\end{document} of rank \begin{document}$ n $\end{document} contained in a line of \begin{document}$ \mathrm{PG}(2,q^n) $\end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set \begin{document}$ L $\end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing \begin{document}$ L $\end{document} to be an \begin{document}$ {\mathbb F}_{q} $\end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the \begin{document}$ \Gamma\mathrm{L} $\end{document}-class of \begin{document}$ L $\end{document} and the number of inequivalent codes we can construct starting from it.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics of Communications
Advances in Mathematics of Communications 工程技术-计算机:理论方法
CiteScore
2.20
自引率
22.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected. Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome. More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信