V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo
{"title":"$ \\ mathm {PG}(2,q^n) $中的两个点集及其相关代码","authors":"V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo","doi":"10.3934/amc.2022006","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper we consider two pointsets in <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\mathrm{PG}(2,q^n) $\\end{document}</tex-math></inline-formula> arising from a linear set <inline-formula><tex-math id=\"M3\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> of rank <inline-formula><tex-math id=\"M4\">\\begin{document}$ n $\\end{document}</tex-math></inline-formula> contained in a line of <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\mathrm{PG}(2,q^n) $\\end{document}</tex-math></inline-formula>: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set <inline-formula><tex-math id=\"M6\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula>. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing <inline-formula><tex-math id=\"M7\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> to be an <inline-formula><tex-math id=\"M8\">\\begin{document}$ {\\mathbb F}_{q} $\\end{document}</tex-math></inline-formula>-linear set with a <i>short</i> weight distribution, then the associated codes have <i>few weights</i>. We conclude the paper by providing a connection between the <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\Gamma\\mathrm{L} $\\end{document}</tex-math></inline-formula>-class of <inline-formula><tex-math id=\"M10\">\\begin{document}$ L $\\end{document}</tex-math></inline-formula> and the number of inequivalent codes we can construct starting from it.</p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"114 1","pages":"227-245"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Two pointsets in $ \\\\mathrm{PG}(2,q^n) $ and the associated codes\",\"authors\":\"V. Napolitano, O. Polverino, Paolo Santonastaso, Ferdinando Zullo\",\"doi\":\"10.3934/amc.2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper we consider two pointsets in <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\mathrm{PG}(2,q^n) $\\\\end{document}</tex-math></inline-formula> arising from a linear set <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> of rank <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ n $\\\\end{document}</tex-math></inline-formula> contained in a line of <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ \\\\mathrm{PG}(2,q^n) $\\\\end{document}</tex-math></inline-formula>: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula>. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> to be an <inline-formula><tex-math id=\\\"M8\\\">\\\\begin{document}$ {\\\\mathbb F}_{q} $\\\\end{document}</tex-math></inline-formula>-linear set with a <i>short</i> weight distribution, then the associated codes have <i>few weights</i>. We conclude the paper by providing a connection between the <inline-formula><tex-math id=\\\"M9\\\">\\\\begin{document}$ \\\\Gamma\\\\mathrm{L} $\\\\end{document}</tex-math></inline-formula>-class of <inline-formula><tex-math id=\\\"M10\\\">\\\\begin{document}$ L $\\\\end{document}</tex-math></inline-formula> and the number of inequivalent codes we can construct starting from it.</p>\",\"PeriodicalId\":50859,\"journal\":{\"name\":\"Advances in Mathematics of Communications\",\"volume\":\"114 1\",\"pages\":\"227-245\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics of Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3934/amc.2022006\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics of Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3934/amc.2022006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2
摘要
In this paper we consider two pointsets in \begin{document}$ \mathrm{PG}(2,q^n) $\end{document} arising from a linear set \begin{document}$ L $\end{document} of rank \begin{document}$ n $\end{document} contained in a line of \begin{document}$ \mathrm{PG}(2,q^n) $\end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set \begin{document}$ L $\end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing \begin{document}$ L $\end{document} to be an \begin{document}$ {\mathbb F}_{q} $\end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the \begin{document}$ \Gamma\mathrm{L} $\end{document}-class of \begin{document}$ L $\end{document} and the number of inequivalent codes we can construct starting from it.
Two pointsets in $ \mathrm{PG}(2,q^n) $ and the associated codes
In this paper we consider two pointsets in \begin{document}$ \mathrm{PG}(2,q^n) $\end{document} arising from a linear set \begin{document}$ L $\end{document} of rank \begin{document}$ n $\end{document} contained in a line of \begin{document}$ \mathrm{PG}(2,q^n) $\end{document}: the first one is a linear blocking set of Rédei type, the second one extends the construction of translation KM-arcs. We point out that their intersections pattern with lines is related to the weight distribution of the considered linear set \begin{document}$ L $\end{document}. We then consider the Hamming metric codes associated with both these constructions, for which we can completely describe their weight distributions. By choosing \begin{document}$ L $\end{document} to be an \begin{document}$ {\mathbb F}_{q} $\end{document}-linear set with a short weight distribution, then the associated codes have few weights. We conclude the paper by providing a connection between the \begin{document}$ \Gamma\mathrm{L} $\end{document}-class of \begin{document}$ L $\end{document} and the number of inequivalent codes we can construct starting from it.
期刊介绍:
Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.
Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.
More detailed indication of the journal''s scope is given by the subject interests of the members of the board of editors.