Natural Hazards and Earth System Sciences最新文献

筛选
英文 中文
Assessing LISFLOOD-FP with the next-generation digital elevation model FABDEM using household survey and remote sensing data in the Central Highlands of Vietnam 利用越南中部高地的住户调查和遥感数据,用下一代数字高程模型 FABDEM 评估 LISFLOOD-FP
Natural Hazards and Earth System Sciences Pub Date : 2024-02-15 DOI: 10.5194/nhess-24-539-2024
Laurence Hawker, J. Neal, J. Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, Pham Khanh Nam
{"title":"Assessing LISFLOOD-FP with the next-generation digital elevation model FABDEM using household survey and remote sensing data in the Central Highlands of Vietnam","authors":"Laurence Hawker, J. Neal, J. Savage, Thomas Kirkpatrick, Rachel Lord, Yanos Zylberberg, Andre Groeger, Truong Dang Thuy, Sean Fox, Felix Agyemang, Pham Khanh Nam","doi":"10.5194/nhess-24-539-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-539-2024","url":null,"abstract":"Abstract. Flooding is an endemic global challenge with annual damages totalling billions of dollars. Impacts are felt most acutely in low- and middle-income countries, where rapid demographic change is driving increased exposure. These areas also tend to lack high-precision hazard mapping data with which to better understand or manage risk. To address this information gap a number of global flood models have been developed in recent years. However, there is substantial uncertainty over the performance of these data products. Arguably the most important component of a global flood model is the digital elevation model (DEM), which must represent the terrain without surface artifacts such as forests and buildings. Here we develop and evaluate a next generation of global hydrodynamic flood model based on the recently released FABDEM DEM. We evaluate the model and compare it to a previous version using the MERIT DEM at three study sites in the Central Highlands of Vietnam using two independent validation data sets based on a household survey and remotely sensed observations of recent flooding. The global flood model based on FABDEM consistently outperformed a model based on MERIT, and the agreement between the model and remote sensing was greater than the agreement between the two validation data sets.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"24 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139836149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data 利用世纪再分析数据调查德国海湾历史上的强风暴和风暴潮
Natural Hazards and Earth System Sciences Pub Date : 2024-02-14 DOI: 10.5194/nhess-24-481-2024
Elke M. I. Meyer, L. Gaslikova
{"title":"Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data","authors":"Elke M. I. Meyer, L. Gaslikova","doi":"10.5194/nhess-24-481-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-481-2024","url":null,"abstract":"Abstract. Century reanalysis models offer a possibility to investigate extreme events and gain further insights into their impact through numerical experiments. This paper is a comprehensive summary of historical hazardous storm tides in the German Bight (southern North Sea) with the aim of comparing and evaluating the potential of different century reanalysis data to be used for the reconstruction of extreme water levels. The composite analysis of historical water level extremes, underlying atmospheric situations and their uncertainties may further support decision-making on coastal protection and risk assessment. The analysis is done based on the results of the regional hydrodynamic model simulations forced by atmospheric century reanalysis data, e.g. 20th Century Reanalysis Project (20CR) ensembles, ERA5 and UERRA–HARMONIE. The eight selected historical storms lead either to the highest storm tide extremes for at least one of three locations around the German Bight or to extreme storm surge events during low tide. In general, extreme storm tides could be reproduced, and some individual ensemble members are suitable for the reconstruction of respective storm tides. However, the highest observed water level in the German Bight could not be simulated with any considered forcing. The particular weather situations with corresponding storm tracks are analysed to better understand their different impact on the peak storm tides, their variability and their predictability. Storms with more northerly tracks generally show less variability in wind speed and a better agreement with the observed extreme water levels for the German Bight. The impact of two severe historical storms that peaked at low tide is investigated with shifted tides. For Husum in the eastern German Bight this results in a substantial increase in the peak water levels reaching a historical maximum.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"9 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139778621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale 气候降雨水文地质模拟实验(CRHyME):流域地质水文灾害评估新模型
Natural Hazards and Earth System Sciences Pub Date : 2024-02-14 DOI: 10.5194/nhess-24-501-2024
Andrea Abbate, L. Mancusi, Francesco Apadula, Antonella Frigerio, M. Papini, L. Longoni
{"title":"CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale","authors":"Andrea Abbate, L. Mancusi, Francesco Apadula, Antonella Frigerio, M. Papini, L. Longoni","doi":"10.5194/nhess-24-501-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-501-2024","url":null,"abstract":"Abstract. This work presents the new model called CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment), a tool for geo-hydrological hazard evaluation. CRHyME is a physically based and spatially distributed model written in the Python language that represents an extension of the classic hydrological models working at the basin scale. CRHyME's main focus consists of simulating rainfall-induced geo-hydrological instabilities such as shallow landslides, debris flows, catchment erosion and sediment transport into a river. These phenomena are conventionally decoupled from a hydrological routine, while in CRHyME they are simultaneously and quantitatively evaluated within the same code through a multi-hazard approach. CRHyME is applied within some case studies across northern Italy. Among these, the Caldone catchment, a well-monitored basin of 27 km2 located near the city of Lecco (Lombardy), was considered for the calibration of solid-transport routine testing, as well as the spatial-scale dependence related to digital terrain resolution. CRHyME was applied across larger basins of the Valtellina (Alps) and Emilia (Apennines) areas (∼2600 km2) which have experienced severe geo-hydrological episodes triggered by heavy precipitation in the recent past. CRHyME's validation has been assessed through NSE (Nash–Sutcliffe efficiency) and RMSE (root mean square error) hydrological-error metrics, while for landslides the ROC (receiver operating characteristic) methodology was applied. CRHyME has been able to reconstruct the river discharge at the reference hydrometric stations located at the outlets of the basins to estimate the sediment yield at some hydropower reservoirs chosen as a reference and to individuate the location and the triggering conditions of shallow landslides and debris flows. The good performance of CRHyME was reached, assuring the stability of the code and a rather fast computation and maintaining the numerical conservativity of water and sediment balances. CRHyME has shown itself to be a suitable tool for the quantification of the geo-hydrological process and thus useful for civil-protection multi-hazard assessment.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"9 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data 利用世纪再分析数据调查德国海湾历史上的强风暴和风暴潮
Natural Hazards and Earth System Sciences Pub Date : 2024-02-14 DOI: 10.5194/nhess-24-481-2024
Elke M. I. Meyer, L. Gaslikova
{"title":"Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data","authors":"Elke M. I. Meyer, L. Gaslikova","doi":"10.5194/nhess-24-481-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-481-2024","url":null,"abstract":"Abstract. Century reanalysis models offer a possibility to investigate extreme events and gain further insights into their impact through numerical experiments. This paper is a comprehensive summary of historical hazardous storm tides in the German Bight (southern North Sea) with the aim of comparing and evaluating the potential of different century reanalysis data to be used for the reconstruction of extreme water levels. The composite analysis of historical water level extremes, underlying atmospheric situations and their uncertainties may further support decision-making on coastal protection and risk assessment. The analysis is done based on the results of the regional hydrodynamic model simulations forced by atmospheric century reanalysis data, e.g. 20th Century Reanalysis Project (20CR) ensembles, ERA5 and UERRA–HARMONIE. The eight selected historical storms lead either to the highest storm tide extremes for at least one of three locations around the German Bight or to extreme storm surge events during low tide. In general, extreme storm tides could be reproduced, and some individual ensemble members are suitable for the reconstruction of respective storm tides. However, the highest observed water level in the German Bight could not be simulated with any considered forcing. The particular weather situations with corresponding storm tracks are analysed to better understand their different impact on the peak storm tides, their variability and their predictability. Storms with more northerly tracks generally show less variability in wind speed and a better agreement with the observed extreme water levels for the German Bight. The impact of two severe historical storms that peaked at low tide is investigated with shifted tides. For Husum in the eastern German Bight this results in a substantial increase in the peak water levels reaching a historical maximum.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"15 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139838331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale 气候降雨水文地质模拟实验(CRHyME):流域地质水文灾害评估新模型
Natural Hazards and Earth System Sciences Pub Date : 2024-02-14 DOI: 10.5194/nhess-24-501-2024
Andrea Abbate, L. Mancusi, Francesco Apadula, Antonella Frigerio, M. Papini, L. Longoni
{"title":"CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment): a new model for geo-hydrological hazard assessment at the basin scale","authors":"Andrea Abbate, L. Mancusi, Francesco Apadula, Antonella Frigerio, M. Papini, L. Longoni","doi":"10.5194/nhess-24-501-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-501-2024","url":null,"abstract":"Abstract. This work presents the new model called CRHyME (Climatic Rainfall Hydrogeological Modelling Experiment), a tool for geo-hydrological hazard evaluation. CRHyME is a physically based and spatially distributed model written in the Python language that represents an extension of the classic hydrological models working at the basin scale. CRHyME's main focus consists of simulating rainfall-induced geo-hydrological instabilities such as shallow landslides, debris flows, catchment erosion and sediment transport into a river. These phenomena are conventionally decoupled from a hydrological routine, while in CRHyME they are simultaneously and quantitatively evaluated within the same code through a multi-hazard approach. CRHyME is applied within some case studies across northern Italy. Among these, the Caldone catchment, a well-monitored basin of 27 km2 located near the city of Lecco (Lombardy), was considered for the calibration of solid-transport routine testing, as well as the spatial-scale dependence related to digital terrain resolution. CRHyME was applied across larger basins of the Valtellina (Alps) and Emilia (Apennines) areas (∼2600 km2) which have experienced severe geo-hydrological episodes triggered by heavy precipitation in the recent past. CRHyME's validation has been assessed through NSE (Nash–Sutcliffe efficiency) and RMSE (root mean square error) hydrological-error metrics, while for landslides the ROC (receiver operating characteristic) methodology was applied. CRHyME has been able to reconstruct the river discharge at the reference hydrometric stations located at the outlets of the basins to estimate the sediment yield at some hydropower reservoirs chosen as a reference and to individuate the location and the triggering conditions of shallow landslides and debris flows. The good performance of CRHyME was reached, assuring the stability of the code and a rather fast computation and maintaining the numerical conservativity of water and sediment balances. CRHyME has shown itself to be a suitable tool for the quantification of the geo-hydrological process and thus useful for civil-protection multi-hazard assessment.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"28 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139777618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment 喜马拉雅流域降雨诱发泥石流预警的强度-持续时间阈值数值模型推导
Natural Hazards and Earth System Sciences Pub Date : 2024-02-13 DOI: 10.5194/nhess-24-465-2024
Sudhanshu Dixit, Srikrishnan Siva Subramanian, P. Srivastava, Ali P. Yunus, T. Martha, Sumit Sen
{"title":"Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment","authors":"Sudhanshu Dixit, Srikrishnan Siva Subramanian, P. Srivastava, Ali P. Yunus, T. Martha, Sumit Sen","doi":"10.5194/nhess-24-465-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-465-2024","url":null,"abstract":"Abstract. Debris flows triggered by rainfall are catastrophic geohazards that occur compounded during extreme events. Few early warning systems for shallow landslides and debris flows at the territorial scale use thresholds of rainfall intensity–duration (ID). ID thresholds are mostly defined using hourly rainfall. Due to instrumental and operational challenges, current early warning systems have difficulty forecasting sub-daily time series of weather for landslides in the Himalayas. Here, we present a framework that employs a spatio-temporal numerical model preceded by the Weather Research And Forecast (WRF) Model for analysing debris flows induced by rainfall. The WRF model runs at 1.8 km × 1.8 km resolution to produce hourly rainfall. The hourly rainfall is then used as an input boundary condition in the spatio-temporal numerical model for debris flows. The debris flow model is an updated version of Van Asch et al. (2014) in which sensitivity to volumetric water content, moisture-content-dependent hydraulic conductivity, and seepage routines are introduced within the governing equations. The spatio-temporal numerical model of debris flows is first calibrated for the mass movements in the Kedarnath catchment that occurred during the 2013 North India floods. Various precipitation intensities based on the glossary of the India Meteorological Department (IMD) are set, and parametric numerical simulations are run identifying ID thresholds of debris flows. Our findings suggest that the WRF model combined with the debris flow numerical model shall be used to establish ID thresholds in territorial landslide early warning systems (Te-LEWSs).\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"76 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139840938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment 喜马拉雅流域降雨诱发泥石流预警的强度-持续时间阈值数值模型推导
Natural Hazards and Earth System Sciences Pub Date : 2024-02-13 DOI: 10.5194/nhess-24-465-2024
Sudhanshu Dixit, Srikrishnan Siva Subramanian, P. Srivastava, Ali P. Yunus, T. Martha, Sumit Sen
{"title":"Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment","authors":"Sudhanshu Dixit, Srikrishnan Siva Subramanian, P. Srivastava, Ali P. Yunus, T. Martha, Sumit Sen","doi":"10.5194/nhess-24-465-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-465-2024","url":null,"abstract":"Abstract. Debris flows triggered by rainfall are catastrophic geohazards that occur compounded during extreme events. Few early warning systems for shallow landslides and debris flows at the territorial scale use thresholds of rainfall intensity–duration (ID). ID thresholds are mostly defined using hourly rainfall. Due to instrumental and operational challenges, current early warning systems have difficulty forecasting sub-daily time series of weather for landslides in the Himalayas. Here, we present a framework that employs a spatio-temporal numerical model preceded by the Weather Research And Forecast (WRF) Model for analysing debris flows induced by rainfall. The WRF model runs at 1.8 km × 1.8 km resolution to produce hourly rainfall. The hourly rainfall is then used as an input boundary condition in the spatio-temporal numerical model for debris flows. The debris flow model is an updated version of Van Asch et al. (2014) in which sensitivity to volumetric water content, moisture-content-dependent hydraulic conductivity, and seepage routines are introduced within the governing equations. The spatio-temporal numerical model of debris flows is first calibrated for the mass movements in the Kedarnath catchment that occurred during the 2013 North India floods. Various precipitation intensities based on the glossary of the India Meteorological Department (IMD) are set, and parametric numerical simulations are run identifying ID thresholds of debris flows. Our findings suggest that the WRF model combined with the debris flow numerical model shall be used to establish ID thresholds in territorial landslide early warning systems (Te-LEWSs).\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"107 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the fire weather index system for peatlands using peat-specific hydrological input data 利用泥炭特有的水文输入数据改进泥炭地火灾气象指数系统
Natural Hazards and Earth System Sciences Pub Date : 2024-02-09 DOI: 10.5194/nhess-24-445-2024
Jonas Mortelmans, A. Felsberg, Gabriëlle J. M. De Lannoy, S. Veraverbeke, Robert D. Field, Niels Andela, Michel Bechtold
{"title":"Improving the fire weather index system for peatlands using peat-specific hydrological input data","authors":"Jonas Mortelmans, A. Felsberg, Gabriëlle J. M. De Lannoy, S. Veraverbeke, Robert D. Field, Niels Andela, Michel Bechtold","doi":"10.5194/nhess-24-445-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-445-2024","url":null,"abstract":"Abstract. The Canadian Fire Weather Index (FWI) system, even though originally developed and calibrated for an upland Jack pine forest, is used globally to estimate fire danger for any fire environment. However, for some environments, such as peatlands, the applicability of the FWI in its current form, is often questioned. In this study, we replaced the original moisture codes of the FWI with hydrological estimates resulting from the assimilation of satellite-based L-band passive microwave observations into a peatland-specific land surface model. In a conservative approach that maintains the integrity of the original FWI structure, the distributions of the hydrological estimates were first matched to those of the corresponding original moisture codes before replacement. The resulting adapted FWI, hereafter called FWIpeat, was evaluated using satellite-based information on fire presence over boreal peatlands from 2010 through 2018. Adapting the FWI with model- and satellite-based hydrological information was found to be beneficial in estimating fire danger, especially when replacing the deeper moisture codes of the FWI. For late-season fires, further adaptations of the fine fuel moisture code show even more improvement due to the fact that late-season fires are more hydrologically driven. The proposed FWIpeat should enable improved monitoring of fire risk in boreal peatlands.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"63 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139849593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving the fire weather index system for peatlands using peat-specific hydrological input data 利用泥炭特有的水文输入数据改进泥炭地火灾气象指数系统
Natural Hazards and Earth System Sciences Pub Date : 2024-02-09 DOI: 10.5194/nhess-24-445-2024
Jonas Mortelmans, A. Felsberg, Gabriëlle J. M. De Lannoy, S. Veraverbeke, Robert D. Field, Niels Andela, Michel Bechtold
{"title":"Improving the fire weather index system for peatlands using peat-specific hydrological input data","authors":"Jonas Mortelmans, A. Felsberg, Gabriëlle J. M. De Lannoy, S. Veraverbeke, Robert D. Field, Niels Andela, Michel Bechtold","doi":"10.5194/nhess-24-445-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-445-2024","url":null,"abstract":"Abstract. The Canadian Fire Weather Index (FWI) system, even though originally developed and calibrated for an upland Jack pine forest, is used globally to estimate fire danger for any fire environment. However, for some environments, such as peatlands, the applicability of the FWI in its current form, is often questioned. In this study, we replaced the original moisture codes of the FWI with hydrological estimates resulting from the assimilation of satellite-based L-band passive microwave observations into a peatland-specific land surface model. In a conservative approach that maintains the integrity of the original FWI structure, the distributions of the hydrological estimates were first matched to those of the corresponding original moisture codes before replacement. The resulting adapted FWI, hereafter called FWIpeat, was evaluated using satellite-based information on fire presence over boreal peatlands from 2010 through 2018. Adapting the FWI with model- and satellite-based hydrological information was found to be beneficial in estimating fire danger, especially when replacing the deeper moisture codes of the FWI. For late-season fires, further adaptations of the fine fuel moisture code show even more improvement due to the fact that late-season fires are more hydrologically driven. The proposed FWIpeat should enable improved monitoring of fire risk in boreal peatlands.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139789493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model 利用深度神经网络(DNN)反演模型了解常磐海岸小田中海啸沉积物的流动特征
Natural Hazards and Earth System Sciences Pub Date : 2024-02-08 DOI: 10.5194/nhess-24-429-2024
Rimali Mitra, Hajime Naruse, Tomoya Abe
{"title":"Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model","authors":"Rimali Mitra, Hajime Naruse, Tomoya Abe","doi":"10.5194/nhess-24-429-2024","DOIUrl":"https://doi.org/10.5194/nhess-24-429-2024","url":null,"abstract":"Abstract. The 2011 Tohoku-oki tsunami inundated the Joban coastal area in the Odaka region of the city of Minamisoma, up to 2818 m from the shoreline. In this study, the flow characteristics of the tsunami were reconstructed from deposits using the DNN (deep neural network) inverse model, suggesting that the tsunami inundation occurred in the Froude supercritical condition. The DNN inverse model effectively estimated the tsunami flow parameters in the Odaka region, including the maximum inundation distance, flow velocity, maximum flow depth, and sediment concentration. Despite having a few topographical anthropogenic undulations that caused the inundation height to fluctuate greatly, the reconstructed maximum flow depth and flow velocity were reasonable and close to the values reported in the field observations. The reconstructed data around the Odaka region were characterized by an extremely high velocity (12.1 m s−1). This study suggests that the large fluctuation in flow depths on the Joban Coast compared with the stable flow depths in the Sendai Plain can be explained by the inundation in the supercritical flow condition.\u0000","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139791008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信