Catalysis in Industry最新文献

筛选
英文 中文
Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents 水溶性聚合物对石灰基吸附剂吸附二氧化碳动力学的影响
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040062
V. S. Derevshchikov, O. Yu. Selyutina
{"title":"Effect of Water-Soluble Polymers on the Dynamics of Carbon Dioxide Sorption by Lime-Based Sorbents","authors":"V. S. Derevshchikov,&nbsp;O. Yu. Selyutina","doi":"10.1134/S2070050423040062","DOIUrl":"10.1134/S2070050423040062","url":null,"abstract":"<p>This study concerns the effect of water-soluble polymers with different structures on the sorption properties of unregenerable lime-based sorbents of carbon dioxide. It is shown that introducing water-soluble polymers into the composition of sorbents can either prolong or shorten the periods of their protective effect. To explain these findings, the porous structure of sorbents is studied, the transport of carbon dioxide is modeled using molecular dynamics, and coefficients of the diffusion of СО<sub>2</sub> in water–polymer solutions are calculated. Modelling results correlate with data from sorption experiments: a stronger dynamic sorption capacity is obtained for a sorbent when a water–polymer medium with a greater coefficient of СО<sub>2</sub> diffusion is added. These results can be used to optimize systems for separating carbon dioxide from gaseous mixtures and intensify mass transfer in systems for the photo- and electrocatalytic conversion of СО<sub>2</sub> into useful products.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"325 - 332"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalysis in the Automotive Industry: Mutual Development and State-of-the-Art 汽车工业中的催化作用:共同发展与技术现状
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040050
S. P. Denisov, E. A. Alikin, E. O. Baksheev, V. N. Rychkov
{"title":"Catalysis in the Automotive Industry: Mutual Development and State-of-the-Art","authors":"S. P. Denisov,&nbsp;E. A. Alikin,&nbsp;E. O. Baksheev,&nbsp;V. N. Rychkov","doi":"10.1134/S2070050423040050","DOIUrl":"10.1134/S2070050423040050","url":null,"abstract":"<p>In this paper, the development of catalytic technologies used aboard a vehicle for purifying exhaust gases is estimated and forecasted. According to forecasts, in the next decade, the total production of vehicles will exceed 1 billion units and 75% of them will be equipped with internal combustion engines, which should necessarily be accompanied by an exhaust gas purification system. The development of catalytic technologies for purifying vehicle exhaust gases is mutually stimulated by the tightening of environmental standards and improving the internal combustion engines. For example, to date, the European standards have gone from Euro 1 to Euro 6d. The introduction of Euro 7 standards in Europe and the introduction of their counterparts in a number of countries by 2025 is planned. In addition, this paper discusses the concepts of systems that purify the exhaust gases of gasoline and diesel engines to meet the Euro 7 standards.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"443 - 449"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformation of Amorphous Aluminum Oxide in the Catalytic Dehydration of Aromatic Alcohol 无定形氧化铝在芳香族酒精催化脱水过程中的转变
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040049
A. V. Boretskaya, M. I. Farid, S. R. Egorova, A. A. Lamberov
{"title":"Transformation of Amorphous Aluminum Oxide in the Catalytic Dehydration of Aromatic Alcohol","authors":"A. V. Boretskaya,&nbsp;M. I. Farid,&nbsp;S. R. Egorova,&nbsp;A. A. Lamberov","doi":"10.1134/S2070050423040049","DOIUrl":"10.1134/S2070050423040049","url":null,"abstract":"<p>The widespread use of aluminum oxides to synthesize heterogeneous catalysts in petroleum chemistry and oil refining makes it necessary to determine the factors that influence the efficiency of catalytic systems. However, there have been no studies on the effect of amorphous aluminum oxide in aluminum oxide catalysts on the characteristics of a catalytic reaction. The amount of amorphous aluminum hydroxides and oxides is generally not certified, but they can considerably worsen the performance of a catalyst. Amorphous aluminum oxide samples obtained from two different precursors are studied in this work via X-ray phase analysis, low-temperature nitrogen adsorption, electron microscopy, and thermally programmed desorption of ammonia. The catalytic properties of the samples are studied in the vapor phase dehydration of 1-phenylethanol to styrene. It is shown for the first time that the transformation of amorphous aluminum oxide during the catalytic reaction lowers the conversion of alcohol from 84 (for a fresh catalyst) to 64% (for a regenerated sample). The crystallization of amorphous aluminum oxide through high temperature treatment contributes to an increase in catalytic indicators. However, they do not reach the required values because of a strong drop in the textural characteristics and acidic properties of an aluminum oxide surface.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"387 - 396"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the Structure and Acidity of Zeolites on the Synthesis of Solketal from Glycerol and Acetone 沸石的结构和酸度对甘油和丙酮合成 Solketal 的影响
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S207005042304013X
O. N. Kovalenko, I. I. Simentsova, V. N. Panchenko, M. N. Timofeeva
{"title":"Effect of the Structure and Acidity of Zeolites on the Synthesis of Solketal from Glycerol and Acetone","authors":"O. N. Kovalenko,&nbsp;I. I. Simentsova,&nbsp;V. N. Panchenko,&nbsp;M. N. Timofeeva","doi":"10.1134/S207005042304013X","DOIUrl":"10.1134/S207005042304013X","url":null,"abstract":"<p>A study is performed to establish the main factors that allow regulation of the activity and selectivity of the synthesis of solketal from glycerol and acetone, and the acidic and catalytic properties of mordenite zeolites (MOR, SiO<sub>2</sub> : Al<sub>2</sub>O<sub>3</sub> = 29.2) and faujasite (FAU, SiO<sub>2</sub> : Al<sub>2</sub>O<sub>3</sub> = 14.9; 97 and 810). The reaction is studied in a methanol solution at an acetone : glycerol molar ratio of 2.5 and a temperature of 25–50°C. Using zeolites, the main product is solketal with a selectivity of 88.1–94.7%. It is shown that the main factors determining the conversion of glycerol and the yield of solketal are the accessibility of the reagents to active sites, the number and strength of acid sites, and their resistance to the toxic action of water molecules that form during the reaction.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"410 - 419"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the Nature of Supports and the Degree of Palladium Dispersion on the Catalyst Activity and Selectivity in the Sunflower Oil Hydrogenation Reaction 载体性质和钯分散程度对葵花籽油加氢反应中催化剂活性和选择性的影响
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040098
A. V. Romanenko, P. A. Simonov, M. A. Kulagina, S. I. Udalova, I. N. Voropaev, G. A. Bukhtiyarova
{"title":"Effect of the Nature of Supports and the Degree of Palladium Dispersion on the Catalyst Activity and Selectivity in the Sunflower Oil Hydrogenation Reaction","authors":"A. V. Romanenko,&nbsp;P. A. Simonov,&nbsp;M. A. Kulagina,&nbsp;S. I. Udalova,&nbsp;I. N. Voropaev,&nbsp;G. A. Bukhtiyarova","doi":"10.1134/S2070050423040098","DOIUrl":"10.1134/S2070050423040098","url":null,"abstract":"<p>Results of studying the Pd/C and Pd/O powder catalysts synthesized by the deposition of 0.5 and 1.0 wt % Pd on carbon materials (Sibunit 159k, thermal carbon black T-900, Vulcan XC<b>-</b>72R) and oxide supports (Ox: γ-Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, Ga<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, Ta<sub>2</sub>O<sub>5</sub>, and V<sub>2</sub>O<sub>5</sub>, diatomaceous earth FW-70) and their catalytic properties in the partial hydrogenation of sunflower oil were described. Using a Parr fixed-bed reactor, comparative tests of the catalysts in the kinetic mode conducted to determine their activity (SCA, <i>V</i><sub>0</sub>) and <i>trans</i>-isomerization selectivity parameters (<i>S</i><sub>tr</sub>). The effect of the average particle size of supported palladium (<i>d</i><sub>CO</sub>) on these parameters in a wide range of <i>d</i><sub>CO</sub> values was discussed.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"374 - 386"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica- and Alumina-Supported Sulfated Zirconia Catalysts for Hexane Isomerization: Effect of the Support Nature 用于己烷异构化的二氧化硅和氧化铝支撑硫酸化氧化锆催化剂:支撑性质的影响
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040116
M. D. Smolikov, L. I. Bikmetova, K. V. Kazantsev, V. A. Skurenok, S. S. Yablokova, A. V. Lavrenov
{"title":"Silica- and Alumina-Supported Sulfated Zirconia Catalysts for Hexane Isomerization: Effect of the Support Nature","authors":"M. D. Smolikov,&nbsp;L. I. Bikmetova,&nbsp;K. V. Kazantsev,&nbsp;V. A. Skurenok,&nbsp;S. S. Yablokova,&nbsp;A. V. Lavrenov","doi":"10.1134/S2070050423040116","DOIUrl":"10.1134/S2070050423040116","url":null,"abstract":"<p>The effect of the support nature on the hexane isomerization reaction parameters for SiO<sub>2</sub>- and Al<sub>2</sub>O<sub>3</sub>-supported sulfated zirconia catalysts with different textural characteristics has been studied. It has been shown that a higher hexane conversion is achieved in the presence of sulfated zirconia catalysts supported on aluminas. Using IR spectroscopy of adsorbed CO, it has been found that, in the Al<sub>2</sub>O<sub>3</sub>-supported catalysts, the concentration of Brønsted acid sites (BAS) characterized by adsorbed CO with an absorption band at 2170 cm<sup>–1</sup> and strong Lewis acid sites (LAS) characterized by adsorbed CO with absorption bands at 2210 and 2224 cm<sup>–1</sup> is higher than that in the SiO<sub>2</sub>-supported catalysts. In the Al<sub>2</sub>O<sub>3</sub>-supported catalysts with different textural characteristics, an increase in the contribution of LAS to the total acidity leads to a significant increase in the high-octane 2,2-dimethylbutane yield and the hexane isomerization depth.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"350 - 356"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity 第二加氢裂化阶段催化剂试验条件对达到稳态活性时间的影响
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040074
I. S. Golubev, P. P. Dik, M. O. Kazakov, O. V. Klimov, A. S. Noskov
{"title":"The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity","authors":"I. S. Golubev,&nbsp;P. P. Dik,&nbsp;M. O. Kazakov,&nbsp;O. V. Klimov,&nbsp;A. S. Noskov","doi":"10.1134/S2070050423040074","DOIUrl":"10.1134/S2070050423040074","url":null,"abstract":"<p>Catalysts of the second stage of hydrocracking are tested under different conditions, reducing the time required to reach the level of steady-state activity. Tests are performed on a laboratory testbench under conditions (temperature, pressure, and liquid hourly space velocity (LHSV)) close to industrial and typical of the second stage of hydrocracking. Introducing an additional preliminary stage at the start of tests at elevated temperatures and LHSVs while using a dimethyl disulfide solution in decane as a sulfiding mixture are shown to substantially reduce the time of experiment. Conditions of the preliminary stage that preserve the catalyst’s selectivity to diesel are selected.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"434 - 442"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ru-Bentonite Catalyzed Green Knoevenagel Condensation of Substituted Benzaldehydes with Ethyl Cyanoacetate Ru-Bentonite 催化取代苯甲醛与氰乙酸乙酯的绿色克诺文纳格尔缩合反应
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040141
Debasis Borah, Deepmoni Brahma,  Dipanwita Basak, Hemaprobha Saikia
{"title":"Ru-Bentonite Catalyzed Green Knoevenagel Condensation of Substituted Benzaldehydes with Ethyl Cyanoacetate","authors":"Debasis Borah,&nbsp;Deepmoni Brahma,&nbsp; Dipanwita Basak,&nbsp;Hemaprobha Saikia","doi":"10.1134/S2070050423040141","DOIUrl":"10.1134/S2070050423040141","url":null,"abstract":"<p>To develop Ru-incorporated bentonite clay as a heterogeneous base catalyst for use in Knoevenagel condensation as an alternative to hazardous base catalysts like pyridine, piperidine, etc., we purify the naturally occurring bentonite clay and Ru<sup>3+</sup> cation incorporated into its interlayers of bentonite clayto improve its porosity and to increase the surface area of bentonite clay. Purified bentonite and Ru-bentonite were characterized by FTIR, PXRD, HRTEM, SEM &amp; EDS, BET surface area analysis, and TGA. Base activation was done to these clays and a comparative study of these clays as recyclable heterogeneous catalysts for Knoevenagel Condensation was undertaken in water as a solvent for the chemical transformation of 2,4-dichlorobenzaldehyde and 4-hydroxybenzaldehyde with ethyl cyanoacetateinto their corresponding α,β- unsaturated acids. The products were characterized by FTIR, <sup>1</sup>H NMR, and <sup>13</sup>C NMR analyses. The essential key points of this reaction are mild reaction conditions, absence of hazardous chemicals as used in classical Knoevenagel condensation, reusability of the catalyst, and high yield percentage of the products.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"420 - 433"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of the Efficiency of Catalysts for the Catalytic Pyrolysis of Polyethylene 聚乙烯催化热解催化剂效率评估
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040086
V. B. Kharitontsev, E. A. Tissen, E. S. Matveenko, Ya. A. Mikhailov, N. Yu. Tret’yakov, A. N. Zagoruiko, A. V. Elyshev
{"title":"Assessment of the Efficiency of Catalysts for the Catalytic Pyrolysis of Polyethylene","authors":"V. B. Kharitontsev,&nbsp;E. A. Tissen,&nbsp;E. S. Matveenko,&nbsp;Ya. A. Mikhailov,&nbsp;N. Yu. Tret’yakov,&nbsp;A. N. Zagoruiko,&nbsp;A. V. Elyshev","doi":"10.1134/S2070050423040086","DOIUrl":"10.1134/S2070050423040086","url":null,"abstract":"<p>The study is focused on the catalytic pyrolysis of high density polyethylene (PE) in the presence of HBEA, HZSM-5, and HFER catalysts and natural clay. The catalytic pyrolysis of plastics is a promising method to process recyclable materials, because it provides the conversion of polymers to other compounds, which are subsequently used as reagents for the chemical industry. The physicochemical parameters of the catalysts have been determined by Fourier transform IR spectroscopy, X-ray diffraction analysis, the nitrogen physical adsorption method, thermogravimetric analysis, and pyrolytic gas chromatography. The dependences of the PE degradation temperatures and the chemical composition of the catalytic pyrolysis products on the type of catalyst used have been revealed. The efficiency of the cracking process and the qualitative composition of the products are affected by two main factors: the structural and acidic parameters of the catalyst. The presence of Brønsted acid sites in zeolites contributes to the occurrence of the cracking and aromatization reactions. The possibility of using a clay sample for the thermal degradation of PE has been studied.</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"397 - 403"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanol Decomposition to Synthesis Gas over Supported Platinum-Containing Catalysts 甲醇在含铂载体催化剂上分解为合成气
IF 0.7
Catalysis in Industry Pub Date : 2023-12-26 DOI: 10.1134/S2070050423040037
S. D. Badmaev, V. D. Belyaev, D. I. Potemkin, P. V. Snytnikov, V. A. Sobyanin, V. V. Kharton
{"title":"Methanol Decomposition to Synthesis Gas over Supported Platinum-Containing Catalysts","authors":"S. D. Badmaev,&nbsp;V. D. Belyaev,&nbsp;D. I. Potemkin,&nbsp;P. V. Snytnikov,&nbsp;V. A. Sobyanin,&nbsp;V. V. Kharton","doi":"10.1134/S2070050423040037","DOIUrl":"10.1134/S2070050423040037","url":null,"abstract":"<p>The properties of supported Pt-containing granular (Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>) and structured catalysts (Pt/Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>/η-Al<sub>2</sub>O<sub>3</sub>/FeCrAl) in methanol decomposition to synthesis gas for feeding solid oxide fuel cells have been studied. It has been shown that the use of a structured catalyst for the methanol decomposition reaction is promising. It has been found that the addition of a small amount of oxygen to the feed mixture hinders the formation of carbon and thereby increases the on-stream stability of the catalyst. At atmospheric pressure, a temperature of ≈400°C, a reaction mixture feed space velocity of 5.6 L/(g<sub>cat</sub> h), and a CH<sub>3</sub>OH : air volume ratio of 1, the proposed 0.15 wt % Pt/8 wt % Ce<sub>0.75</sub>Zr<sub>0.25</sub>O<sub>2 – δ</sub>/6 wt % η-Al<sub>2</sub>O<sub>3</sub>/FeCrAl structured catalyst can provide a complete methanol conversion to synthesis gas with a total content of H<sub>2</sub> and CO of ≈64 vol % and a productivity with respect to synthesis gas of ≈6.7 L(H<sub>2</sub> + CO)/(g<sub>cat</sub> h).</p>","PeriodicalId":507,"journal":{"name":"Catalysis in Industry","volume":"15 4","pages":"367 - 373"},"PeriodicalIF":0.7,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信