InorganicsPub Date : 2024-03-07DOI: 10.3390/inorganics12030083
Alena V. Kadomtseva, Georgy M. Mochalov, M. A. Zasovskaya, Anatoly M. Ob’edkov
{"title":"Synthesis, Structure, and Biological Activity of the Germanium Dioxide Complex Compound with 2-Amino-3-Hydroxybutanoic Acid","authors":"Alena V. Kadomtseva, Georgy M. Mochalov, M. A. Zasovskaya, Anatoly M. Ob’edkov","doi":"10.3390/inorganics12030083","DOIUrl":"https://doi.org/10.3390/inorganics12030083","url":null,"abstract":"Currently, a promising direction of study is the use of biologically active coordination compounds in the pharmacopoeia and the creation of effective bactericidal drugs, biomaterials, and enzyme modulators on that basis. The paper considers a coordination germanium compound with 2-amino-3-hydroxybutanoic acid. The prospects for the use of the compound in medicine are outlined. This work is aimed at solving the problems regarding the synthesis of biologically active compounds with a wide spectrum of actions. The structure and composition of the coordination compound have been established through calculation and experimental methods. The biocidal (bactericidal and fungicidal) activity of germanium-containing compounds against a number of bacteria and microscopic fungi has been studied. Using the quantum-chemical method with density functional theory (DFT, B3LYP/6–311++G(2d,2p)), the theoretical IR spectrum of the compound was calculated. The structure of the coordination compound and the structure of the intermediates at all stages of the synthesis process were established by calculation.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140260443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-03-06DOI: 10.3390/inorganics12030081
Sake Wang, Minglei Sun, N. T. Hung
{"title":"Advanced Inorganic Semiconductor Materials","authors":"Sake Wang, Minglei Sun, N. T. Hung","doi":"10.3390/inorganics12030081","DOIUrl":"https://doi.org/10.3390/inorganics12030081","url":null,"abstract":"The information technology revolution has been based decisively on the development and application of inorganic semiconductors [...]","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"20 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140262419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-29DOI: 10.3390/inorganics12030075
V. Larson, Jeff W. Kampf, N. Lehnert
{"title":"Structural and Spectroscopic Characterization of Co(II) Bis(Benzenedichlorodithiolate): An Intermediate in Hydrogen Evolution Catalysis","authors":"V. Larson, Jeff W. Kampf, N. Lehnert","doi":"10.3390/inorganics12030075","DOIUrl":"https://doi.org/10.3390/inorganics12030075","url":null,"abstract":"Co bis(benzenedithiolate) type complexes have captivated chemists for decades for their interesting geometric and electronic structures and more recently, for their impressive ability to mediate the hydrogen evolution reaction (HER) both photo- and electrocatalytically. However, these complexes have nearly exclusively been characterized in their air-stable Co(III) oxidation states. In this work, Co(II) bis(benzenedichlorodithiolate) was prepared by chemical and electrochemical one-electron reduction. This reduced Co(II) complex was characterized by X-ray crystallography and in-depth spectroscopic studies—including UV-Vis, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy. [Co(II)(Cl2bdt)2]2− is thereby shown to be a square planar complex, with a primarily metal-centered reduction, and an St = 1/2 spin state. This study informs our understanding of the first step in the HER catalytic cycle of Co bis(benzenedithiolate) type complexes and paves the way for future mechanistic studies on this catalyst family.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"50 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140408410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-29DOI: 10.3390/inorganics12030074
N. Zhuk, B. Makeev, A.V. Koroleva, Alexey M. Lebedev, O. V. Petrova, S. Nekipelov, V. Sivkov
{"title":"XPS and NEXAFS Characterization of Mg/Zn and Mn Codoped Bismuth Tantalate Pyrochlores","authors":"N. Zhuk, B. Makeev, A.V. Koroleva, Alexey M. Lebedev, O. V. Petrova, S. Nekipelov, V. Sivkov","doi":"10.3390/inorganics12030074","DOIUrl":"https://doi.org/10.3390/inorganics12030074","url":null,"abstract":"Two series of the bismuth tantalate pyrochlore samples, codoped with Mg,Mn and Zn,Mn, were synthesized via solid-phase reaction. It was established that the Bi2Mg(Zn)xMn1−xTa2O9.5−Δ (x = 0.3; 0.5; 0.7) samples contain the main phase of cubic pyrochlore (sp. gr. Fd-3m) and an admixture of triclinic BiTaO4 (sp. gr. P-1). In both sets, the amount of BiTaO4 is proportional to the amount of manganese doping, however, zinc-containing samples have a higher level of impurities than magnesium-containing ones. The unit cell parameter of the Zn,Mn codoped bismuth tantalate phase increases with an increasing content of zinc ions in the samples from 10.4895(5) (x = 0.3) to 10.5325(5) Å (x = 0.7). The unit cell parameter of Mg,Mn codoped bismuth tantalate pyrochlores increases uniformly with an increasing index x(Mg) from 10.4970(8) at x = 0.3 to 10.5248(8) Å at x = 0.7, according to the Vegard rule. The NEXAFS and XPS data showed that the ions were found to have oxidation states of Bi(+3), Ta(+5), Zn(+2) and Mg(+2). In the Ta 4f XPS spectrum of both series of samples, a low energy shift of the absorption band characteristic of tantalum ions with an effective charge of (+5-δ) was observed. The XPS spectra of Bi4f7/2 and Bi4f5/2 also show a shift of bands towards lower energies which is attributed to the presence of some low-charge ions of transition elements in the bismuth position. The NEXAFS spectroscopy data showed that manganese ions in both series of samples have predominantly 2+ and 3+ oxidation states. XPS data indicate that in zinc-containing preparations the proportion of oxidized manganese ions is higher than in magnesium-containing ones.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"740 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140416958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-28DOI: 10.3390/inorganics12030072
Léon Escomel, E. Jeanneau, C. Thieuleux, C. Camp
{"title":"Alkane Elimination Preparation of Heterobimetallic MoAl Tetranuclear and Binuclear Complexes Promoting THF Ring Opening","authors":"Léon Escomel, E. Jeanneau, C. Thieuleux, C. Camp","doi":"10.3390/inorganics12030072","DOIUrl":"https://doi.org/10.3390/inorganics12030072","url":null,"abstract":"We report a straightforward alkane elimination strategy to prepare well-defined heterobimetallic Al/Mo species. Notably, the reaction of the monohydride complex of molybdenum, Cp*MoH(CO)3, with triisobutyl aluminum affords a new heterobimetallic [MoAl]2 tetranuclear compound, [Cp*Mo(CO)(µ-CO)2Al(iBu)2]2, (1), featuring a 12-membered C4O4Mo2Al2 ring in which isocarbonyls bridge the Mo and Al centers. The addition of pyridine to this complex successfully results in the dissociation of the dimer into a new discrete binuclear complex, [Cp*Mo(CO)2(µ-CO)Al(Py)(iBu)2], (2). Switching the nature of the Lewis base from pyridine to tetrahydrofuran does not lead to the THF analogue of adduct 2, but rather to a complex reaction where one of the identified products corresponds to a tetranuclear species, [Cp*Mo(CO)3(μ-CH2CH2CH2CH2O)Al(iBu)2]2, (3), featuring two bridging alkoxybutyl fragments originating from the C-O ring opening of THF. Compound 3 adds to the unusual occurrences of THF ring opening by heterobimetallic complexes, which is evocative of masked metal-only frustrated Lewis pair behavior and highlights the high reactivity of these Al/Mo assemblies.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"83 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140421393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-28DOI: 10.3390/inorganics12030073
Jing-Yan Fan, Su-Yang Yao, Baohui Ye
{"title":"In Situ Synthesis of Hexadentate Cyclometalated Ir(III) Complexes as Photocatalysts for the Oxidation of Sulfides into Sulfoxides in Water","authors":"Jing-Yan Fan, Su-Yang Yao, Baohui Ye","doi":"10.3390/inorganics12030073","DOIUrl":"https://doi.org/10.3390/inorganics12030073","url":null,"abstract":"The aerobic photooxidation of sulfides into sulfoxides in eco-friendly solvents, notably water, at room temperature, represents a significant interest in the domain of synthetic chemistry. This study introduces four highly stable hexadentate Ir(III) complexes: [Ir(fpqen)](PF6) (1), [Ir(btqen)](PF6) (2), [Ir(bmpqen)](PF6) (3), and [Ir(bnqen](PF6) (4) (where bfpqen is N,N′-bis(2-(4-fluorophenyl)quinolin-8-yl)ethane-1,2-diamine, btqen is N,N′-bis(2-(4-tolyl)quinolin-8-yl)ethane-1,2-diamine, bmpqen is N,N′-bis(2-(4-methoxyphenyl)quinolin-8-yl)ethane-1,2-diamine, and bnqen is N,N′-bis(2-naphthylquinolin-8-yl)ethane-1,2-diamine). These complexes were synthesized utilizing an in situ inter-ligand C-N cross-coupling photoreaction of the precursors [Ir(L)2(en)](PF6) (L is 2-(4-fluorophenyl)quinoline, (2-(4-tolyl)quinoline, 2-(4-methoxyphenyl)quinoline or 2-naphthylquinoline, and en is 1,2-diamine) under benign conditions. This methodology furnishes a valuable and complementary approach for the in situ generation of multidentate complexes through a post-coordination inter-ligand-coupling strategy under mild conditions. Moreover, these hexadentate Ir(III) complexes exhibit pronounced catalytic activity and chemo-selectivity toward the aerobic photooxidations of sulfides into sulfoxides in aqueous media at room temperature, offering a new avenue for the sustainable synthesis of sulfoxides.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140418190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-27DOI: 10.3390/inorganics12030071
Shuang Zeng, Jing Yang, Qingqing Liu, J. Bai, W. Bai, Yuanyuan Zhang, Xiaodong Tang
{"title":"Dielectric Spectroscopy of Non-Stoichiometric SrMnO3 Thin Films","authors":"Shuang Zeng, Jing Yang, Qingqing Liu, J. Bai, W. Bai, Yuanyuan Zhang, Xiaodong Tang","doi":"10.3390/inorganics12030071","DOIUrl":"https://doi.org/10.3390/inorganics12030071","url":null,"abstract":"The dielectric properties of non-stoichiometric SrMnO3 (SMO) thin films grown by molecular beam epitaxy were systematically investigated. Especially, the effects of cation stoichiometry-induced diverse types and densities of defects on the dielectric properties of SMO films were revealed. Two anomalous dielectric relaxation behaviors were observed at different temperatures in both Sr-rich and Mn-rich samples. High-temperature dielectric relaxation, resulting from a short-range Mn-related Jahn–Teller (JT) polaron hopping motion, was reinforced by an enhancement of JT polaron density in the Sr-rich film, which contained abundant SrO Ruddlesden–Popper (R-P) stacking faults. However, an excessive number of disordered Sr vacancy clusters in Mn-rich thin film suppressed the hopping path of JT polarons and enormously weakened this dielectric relaxation. Thus, The Sr-rich film demonstrated a higher dielectric constant and dielectric loss than the Mn-rich film. In addition, low-temperature dielectric relaxation may be attributed to the polarization/charge glass state.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"84 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-26DOI: 10.3390/inorganics12030070
Kozo Sato, Natsumi Yano, Y. Kataoka
{"title":"6-Bromo-2-hydroxypyridinate-bridged Paddlewheel-Type Dirhodium Complex Isomers: Synthesis, Crystal Structures, Electrochemical Properties, and Structure-Dependent Absorption Properties","authors":"Kozo Sato, Natsumi Yano, Y. Kataoka","doi":"10.3390/inorganics12030070","DOIUrl":"https://doi.org/10.3390/inorganics12030070","url":null,"abstract":"Two new paddlewheel-type dirhodium (Rh2) complex isomers, formulated as trans-2,2- and 3,1-forms of [Rh2(bhp)4] (bhp = 6-bromo-2-hydroxypyridinate), were obtained by the reaction of 6-bromo-2-hydroxypyridine with [Rh2(O2CCH3)4(H2O)2] and characterized by NMR, ESI-MS, and elemental analyses. Single crystal X-ray diffraction analyses clarified that the crystal structure of trans-2,2-form takes a conventional paddlewheel-type dimer structure with no axial coordination ligands, i.e., trans-2,2-[Rh2(bhp)4], whereas that of the 3,1-form changed significantly depending on the kinds of solvent used for crystallization processes; dimer-of-dimers-type tetrarhodium complex, i.e., 3,1-[Rh2(bhp)4]2, and a conventional paddlewheel-type dimer complex with an axial DMF ligand, i.e., 3,1-[Rh2(bhp)4(DMF)], were observed. The 3,1-form showed unique absorption changes that were not observed in the trans-2,2-form; the trans-2,2-form showed an absorption band at approximately 780 nm both in the solid state and in solution (CH2Cl2 and DMF), whereas the 3,1-form showed a similar absorption band at 783 nm in CH2Cl2 solution, but their corresponding bands were blue-shifted in solid state (655 nm) and in DMF solution (608 nm). The molecular structures and the origin of their unique absorption properties of these Rh2 complexes were investigated using density functional theory (DFT) and time-dependent DFT (TDDFT).","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"33 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140429453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-24DOI: 10.3390/inorganics12030069
Nada S. Al-Kadhi, Ghadah M. Al-Senani, Faisal K. Algethami, Reem K. Shah, F. Saad, Alaa M. Munshi, Khalil ur Rehman, L. Khezami, Ehab A. Abdelrahman
{"title":"Calcium Ferrite Nanoparticles: A Simple Synthesis Approach for the Effective Disposal of Congo Red Dye from Aqueous Environments","authors":"Nada S. Al-Kadhi, Ghadah M. Al-Senani, Faisal K. Algethami, Reem K. Shah, F. Saad, Alaa M. Munshi, Khalil ur Rehman, L. Khezami, Ehab A. Abdelrahman","doi":"10.3390/inorganics12030069","DOIUrl":"https://doi.org/10.3390/inorganics12030069","url":null,"abstract":"Congo red dye is classified as a toxic chemical and can be harmful if ingested, inhaled, or in contact with the skin or eyes. It can cause irritation, allergic reactions, and skin sensitization in some individuals. Thus, in this paper, CaFe2O4 nanoparticles were produced by a simple Pechini sol-gel approach and used as an adsorbent material for the efficient disposal of Congo red dye from aqueous solutions. The maximum adsorption capacity of the CaFe2O4 towards Congo red dye is 318.47 mg/g. Furthermore, the synthesized CaFe2O4 nanoparticles exhibit an average crystal size of 24.34 nm. Scanning electron microscopy (SEM) examination showed that the CaFe2O4 nanoparticles are basically ball-like particles with a mean grain size of 540.54 nm. Moreover, transmission electron microscopy (TEM) examination showed that the CaFe2O4 sample revealed aggregated spherical particles with a mean diameter of 27.48 nm. The Energy-dispersive X-ray spectroscopy (EDS) pattern reveals that the produced CaFe2O4 nanoparticles are composed of Ca, Fe, and O elements, with an atomic ratio of 1:2:4 of these elements, respectively. The disposal of Congo red dye by the synthesized CaFe2O4 nanoparticles is chemical, spontaneous, exothermic, perfectly aligned with the pseudo-second-order kinetic model, and exhibited excellent conformity with the Langmuir equilibrium isotherm.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"40 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
InorganicsPub Date : 2024-02-23DOI: 10.3390/inorganics12030068
Yameng Hou, Xianglei Kong
{"title":"Endometallofullerenes in the Gas Phase: Progress and Prospect","authors":"Yameng Hou, Xianglei Kong","doi":"10.3390/inorganics12030068","DOIUrl":"https://doi.org/10.3390/inorganics12030068","url":null,"abstract":"This review describes the progress of the gas-phase study of endometallofullerenes (EMFs) by mass spectrometry and theoretical calculation over the past 15 years. The attention herein focuses on the gas-phase syntheses, reactions, and generation mechanisms of some novel EMF ions, along with their structures and properties. The highlighted new species include EMFs with small-size carbon cages of C2n (n < 60), multiple metal atoms (Mx@C2n, x ≥ 3), late transition metals, and encaged ionic bonds. Furthermore, the gas-phase experimental and calculational supports for top-down or bottom-up models are summarized and discussed. These gas-phase results not only provide experimental evidence for the existence of related novel EMF species and possible synthesis methods for them, but they also provide new insights about chemical bonds in restricted space. In addition, the opportunities and further development directions faced by gas-phase EMF study are anticipated.","PeriodicalId":507601,"journal":{"name":"Inorganics","volume":"8 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140435700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}