Tomas Bayer, Tamás Mészáros, Lajos Rónyai, Tibor Szabó
{"title":"The automorphism group of projective norm graphs","authors":"Tomas Bayer, Tamás Mészáros, Lajos Rónyai, Tibor Szabó","doi":"10.1007/s00200-022-00590-3","DOIUrl":"10.1007/s00200-022-00590-3","url":null,"abstract":"<div><p>The projective norm graphs are central objects to extremal combinatorics. They appear in a variety of contexts, most importantly they provide tight constructions for the Turán number of complete bipartite graphs <span>(K_{t,s})</span> with <span>(s>(t-1)!)</span>. In this note we deepen their understanding further by determining their automorphism group.\u0000</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00200-022-00590-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45591908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bounds on the maximum nonlinearity of permutations on the rings ({mathbb {Z}}_p) and ({mathbb {Z}}_{2p})","authors":"Prachi Gupta, P. R. Mishra, Atul Gaur","doi":"10.1007/s00200-022-00594-z","DOIUrl":"10.1007/s00200-022-00594-z","url":null,"abstract":"<div><p>In 2016, Y. Kumar et al. in the paper ‘<i>Affine equivalence and non-linearity of permutations over</i> <span>({mathbb {Z}}_n)</span>’ conjectured that: <i>For</i> <span>(nge 3)</span>, <i>the nonlinearity of any permutation on</i> <span>({mathbb {Z}}_n)</span>, <i>the ring of integers modulo</i> <i>n</i>, <i>cannot exceed</i> <span>(n-2)</span>. For an odd prime <i>p</i>, we settle the above conjecture when <span>(n=2p)</span> and for <span>(pequiv 3 pmod {4})</span> we prove the above conjecture with an improved upper bound. Further, we derive a lower bound on <span>(max {mathcal {N}}{mathcal {L}}_n)</span> when <i>n</i> is an odd prime or twice of an odd prime where <span>(max {mathcal {N}}{mathcal {L}}_n)</span> denotes the maximum possible nonlinearity of any permutation on <span>({mathbb {Z}}_n)</span>.</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.6,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49231409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-orthogonal codes constructed from weakly self-orthogonal designs invariant under an action of \u0000 \u0000 \u0000 \u0000 $$M_{11}$$\u0000 \u0000 \u0000 M\u0000 11\u0000 \u0000 \u0000","authors":"Vedrana Mikulić Crnković, Ivona Traunkar","doi":"10.1007/s00200-020-00484-2","DOIUrl":"https://doi.org/10.1007/s00200-020-00484-2","url":null,"abstract":"","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00200-020-00484-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52020721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}