Marlene Koelbing, Bernhard Garn, Enrico Iurlano, Ilias S. Kotsireas, Dimitris E. Simos
{"title":"SCA生成的代数和SAT模型","authors":"Marlene Koelbing, Bernhard Garn, Enrico Iurlano, Ilias S. Kotsireas, Dimitris E. Simos","doi":"10.1007/s00200-023-00597-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we compute sequence covering arrays (SCAs), which are arrays, consisting of sequences, such that all subsequences with pairwise different entries of some length are covered, via a novel approach based on commutative algebra and symbolic computation. Hereby, we provide various algebraic models being capable to characterize possibly small sets of permutations collectively containing particular shorter subsequences. These models take the form of multivariate polynomial systems of equations and are then processed via supercomputing by a Gröbner Basis solver in order to compute solutions from them. If the variety is not empty, i.e. the Gröbner basis is non-trivial, then each point in the computed variety can be transformed to a SCA. In our experiments, we observed varying computational performance depending on the chosen model, while all of them exhibited scalability issues. Additionally and for comparison, we give new SAT descriptions modelling SCAs. By employing a SAT solver on our provided SAT models, we are able to provide upper bounds, one of which is best among literature results. Lastly, we adapt our SAT approach to answer a question posed by Yuster (Des Codes Cryptogr 88(3):585–593, 2020). As a result, we find a characterization of the dimensions of all perfect SCAs with coverage multiplicity two of strength three.</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":"36 2","pages":"173 - 222"},"PeriodicalIF":0.6000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00200-023-00597-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Algebraic and SAT models for SCA generation\",\"authors\":\"Marlene Koelbing, Bernhard Garn, Enrico Iurlano, Ilias S. Kotsireas, Dimitris E. Simos\",\"doi\":\"10.1007/s00200-023-00597-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we compute sequence covering arrays (SCAs), which are arrays, consisting of sequences, such that all subsequences with pairwise different entries of some length are covered, via a novel approach based on commutative algebra and symbolic computation. Hereby, we provide various algebraic models being capable to characterize possibly small sets of permutations collectively containing particular shorter subsequences. These models take the form of multivariate polynomial systems of equations and are then processed via supercomputing by a Gröbner Basis solver in order to compute solutions from them. If the variety is not empty, i.e. the Gröbner basis is non-trivial, then each point in the computed variety can be transformed to a SCA. In our experiments, we observed varying computational performance depending on the chosen model, while all of them exhibited scalability issues. Additionally and for comparison, we give new SAT descriptions modelling SCAs. By employing a SAT solver on our provided SAT models, we are able to provide upper bounds, one of which is best among literature results. Lastly, we adapt our SAT approach to answer a question posed by Yuster (Des Codes Cryptogr 88(3):585–593, 2020). As a result, we find a characterization of the dimensions of all perfect SCAs with coverage multiplicity two of strength three.</p></div>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":\"36 2\",\"pages\":\"173 - 222\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00200-023-00597-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00200-023-00597-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00200-023-00597-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In this paper, we compute sequence covering arrays (SCAs), which are arrays, consisting of sequences, such that all subsequences with pairwise different entries of some length are covered, via a novel approach based on commutative algebra and symbolic computation. Hereby, we provide various algebraic models being capable to characterize possibly small sets of permutations collectively containing particular shorter subsequences. These models take the form of multivariate polynomial systems of equations and are then processed via supercomputing by a Gröbner Basis solver in order to compute solutions from them. If the variety is not empty, i.e. the Gröbner basis is non-trivial, then each point in the computed variety can be transformed to a SCA. In our experiments, we observed varying computational performance depending on the chosen model, while all of them exhibited scalability issues. Additionally and for comparison, we give new SAT descriptions modelling SCAs. By employing a SAT solver on our provided SAT models, we are able to provide upper bounds, one of which is best among literature results. Lastly, we adapt our SAT approach to answer a question posed by Yuster (Des Codes Cryptogr 88(3):585–593, 2020). As a result, we find a characterization of the dimensions of all perfect SCAs with coverage multiplicity two of strength three.
期刊介绍:
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.
Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.
Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.
On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.