{"title":"The Legendre pseudorandom function as a multivariate quadratic cryptosystem: security and applications","authors":"István András Seres, Máté Horváth, Péter Burcsi","doi":"10.1007/s00200-023-00599-2","DOIUrl":null,"url":null,"abstract":"<div><p>Sequences of consecutive Legendre and Jacobi symbols as pseudorandom bit generators were proposed for cryptographic use in 1988. Major interest has been shown towards pseudorandom functions (PRF) recently, based on the Legendre and power residue symbols, due to their efficiency in the multi-party setting. The security of these PRFs is not known to be reducible to standard cryptographic assumptions. In this work, we show that key-recovery attacks against the Legendre PRF are equivalent to solving a specific family of multivariate quadratic (MQ) equation system over a finite prime field. This new perspective sheds some light on the complexity of key-recovery attacks against the Legendre PRF. We conduct algebraic cryptanalysis on the resulting MQ instance. We show that the currently known techniques and attacks fall short in solving these sparse quadratic equation systems. Furthermore, we build novel cryptographic applications of the Legendre PRF, e.g., verifiable random function and (verifiable) oblivious (programmable) PRFs.</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":"36 2","pages":"223 - 253"},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00200-023-00599-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00200-023-00599-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Sequences of consecutive Legendre and Jacobi symbols as pseudorandom bit generators were proposed for cryptographic use in 1988. Major interest has been shown towards pseudorandom functions (PRF) recently, based on the Legendre and power residue symbols, due to their efficiency in the multi-party setting. The security of these PRFs is not known to be reducible to standard cryptographic assumptions. In this work, we show that key-recovery attacks against the Legendre PRF are equivalent to solving a specific family of multivariate quadratic (MQ) equation system over a finite prime field. This new perspective sheds some light on the complexity of key-recovery attacks against the Legendre PRF. We conduct algebraic cryptanalysis on the resulting MQ instance. We show that the currently known techniques and attacks fall short in solving these sparse quadratic equation systems. Furthermore, we build novel cryptographic applications of the Legendre PRF, e.g., verifiable random function and (verifiable) oblivious (programmable) PRFs.
期刊介绍:
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.
Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.
Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.
On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.