{"title":"New results of sparse permutation polynomials with trace functions over $$mathbb {F}_{q^n}$$","authors":"Yan-Ping Wang, Zhengbang Zha","doi":"10.1007/s00200-024-00658-2","DOIUrl":"https://doi.org/10.1007/s00200-024-00658-2","url":null,"abstract":"<p>Permutation polynomials with sparse forms over finite fields attract researchers’ great interest and have important applications in many areas of mathematics and engineering. In this paper, by investigating the exponents (<i>s</i>, <i>i</i>) and the coefficients <span>(a,bin mathbb {F}_{q}^{*})</span>, we present some new results of permutation polynomials of the form <span>(f(x)= ax^{q^i(q^{2}-q+1)} + bx^{s} + textrm{Tr}_{q^n/q}(x))</span> over <span>(mathbb {F}_{q^n})</span> (<span>(n=2)</span> or 3). The permutation property of the new results is given by studying the number of solutions of special equations over <span>(mathbb {F}_{q^n})</span>.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140926985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On circulant involutory and orthogonal MDS matrices over finite commutative rings","authors":"Shakir Ali, Atif Ahmad Khan, Bhupendra Singh","doi":"10.1007/s00200-024-00656-4","DOIUrl":"https://doi.org/10.1007/s00200-024-00656-4","url":null,"abstract":"<p>Let <span>(k>1)</span> be a fixed integer. In Gupta and Ray (Cryptography and Communications 7: 257–287, 2015), proved the non existence of <span>(2^k times 2^k)</span> orthogonal circulant MDS matrices and involutory circulant MDS matrices over finite fields of characteristic 2. The main aim of this paper is to prove the non-existence of orthogonal circulant MDS matrices of order <span>(2^ktimes 2^k)</span> and involutory circulant MDS matrices of order <i>k</i> over finite commutative rings of characteristic 2. Precisely, we prove that any circulant orthogonal matrix of order <span>(2^k)</span> over finite commutative rings of characteristic 2 with identity is not a MDS matrix. Moreover, some related results are also discussed. Finally, we provide some examples to prove that the assumed restrictions on our main results are not superfluous.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sparse polynomial interpolation: faster strategies over finite fields","authors":"Joris van der Hoeven, Grégoire Lecerf","doi":"10.1007/s00200-024-00655-5","DOIUrl":"https://doi.org/10.1007/s00200-024-00655-5","url":null,"abstract":"<p>Consider a multivariate polynomial <span>(f in K [x_1, ldots , x_n])</span> over a field <i>K</i>, which is given through a black box capable of evaluating <i>f</i> at points in <span>(K^n)</span>, or possibly at points in <span>(A^n)</span> for any <i>K</i>-algebra <i>A</i>. The problem of sparse interpolation is to express <i>f</i> in its usual form with respect to the monomial basis. We analyze the complexity of various old and new algorithms for this task in terms of bounds <i>D</i> and <i>T</i> for the total degree of <i>f</i> and its number of terms. We mainly focus on the case when <i>K</i> is a finite field and explore possible speed-ups.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140813078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Solving systems of algebraic equations over finite commutative rings and applications","authors":"Hermann Tchatchiem Kamche, Hervé Talé Kalachi","doi":"10.1007/s00200-024-00652-8","DOIUrl":"https://doi.org/10.1007/s00200-024-00652-8","url":null,"abstract":"<p>Several problems in algebraic geometry and coding theory over finite rings are modeled by systems of algebraic equations. Among these problems, we have the rank decoding problem, which is used in the construction of public-key cryptosystems. A finite chain ring is a finite ring admitting exactly one maximal ideal and every ideal being generated by one element. In 2004, Nechaev and Mikhailov proposed two methods for solving systems of polynomial equations over finite chain rings. These methods used solutions over the residue field to construct all solutions step by step. However, for some types of algebraic equations, one simply needs partial solutions. In this paper, we combine two existing approaches to show how Gröbner bases over finite chain rings can be used to solve systems of algebraic equations over finite commutative rings. Then, we use skew polynomials and Plücker coordinates to show that some algebraic approaches used to solve the rank decoding problem and the MinRank problem over finite fields can be extended to finite principal ideal rings.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798004","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Shahriyari, R. Nikandish, A. Tehranian, H. Rasouli
{"title":"Metric dimension and strong metric dimension in annihilator-ideal graphs","authors":"R. Shahriyari, R. Nikandish, A. Tehranian, H. Rasouli","doi":"10.1007/s00200-024-00657-3","DOIUrl":"https://doi.org/10.1007/s00200-024-00657-3","url":null,"abstract":"<p>Let <i>R</i> be a commutative ring with identity and <i>A</i>(<i>R</i>) be the set of ideals with non-zero annihilator. The annihilator-ideal graph of <i>R</i> is defined as the graph <span>(mathrm{A_I}(R))</span> with the vertex set <span>(A(R)^*=A(R)setminus {0})</span> and two distinct vertices <i>L</i>, <i>K</i> are adjacent if and only if <span>(textrm{Ann}_R(K) cup textrm{Ann}_R(L))</span> is a proper subset of <span>(textrm{Ann}_R(KL))</span>. In this paper, we determine the metric dimension of <span>(mathrm{A_I}(R))</span>. Also, the twin-free clique number for <span>(mathrm{A_I}(R))</span> is computed and as an application the strong metric dimension in annihilator-ideal graphs is given.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140623606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on the Assmus–Mattson theorem for some ternary codes","authors":"Eiichi Bannai, Tsuyoshi Miezaki, Hiroyuki Nakasora","doi":"10.1007/s00200-024-00654-6","DOIUrl":"https://doi.org/10.1007/s00200-024-00654-6","url":null,"abstract":"<p>Let <i>C</i> be a two and three-weight ternary code. Furthermore, we assume that <span>(C_ell )</span> are <i>t</i>-designs for all <span>(ell )</span> by the Assmus–Mattson theorem. We show that <span>(t le 5)</span>. As a corollary, we provide a new characterization of the (extended) ternary Golay code.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Obtaining new classes of optimal linear codes by puncturing and shortening optimal cyclic codes","authors":"Félix Hernández, Gerardo Vega","doi":"10.1007/s00200-024-00653-7","DOIUrl":"https://doi.org/10.1007/s00200-024-00653-7","url":null,"abstract":"<p>In this paper we use the puncturing and shortening techniques on two already-known classes of optimal cyclic codes in order to obtain three new classes of optimal linear codes achieving the Griesmer bound. The weight distributions for these codes are settled. We also investigate their dual codes and show that they are either optimal or almost optimal with respect to the sphere-packing bound. Moreover, these duals contain classes of almost maximum distance separable codes which are shown to be proper for error detection. Further, some of the obtained optimal linear codes are suitable for constructing secret sharing schemes with nice access structures.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Several new infinite classes of 0-APN power functions over $$mathbb {F}_{2^n}$$","authors":"Yuying Man, Shizhu Tian, Nian Li, Xiangyong Zeng, Yanbin Zheng","doi":"10.1007/s00200-024-00651-9","DOIUrl":"https://doi.org/10.1007/s00200-024-00651-9","url":null,"abstract":"<p>The investigation of partially APN functions has attracted a lot of research interest recently. In this paper, we present several new infinite classes of 0-APN power functions over <span>(mathbb {F}_{2^n})</span> by using the multivariate method and resultant elimination, and show that these 0-APN power functions are CCZ-inequivalent to the known ones.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New cyclic groups based on the generalized order-k Pell sequences in the Heisenberg group and their application in cryptography","authors":"","doi":"10.1007/s00200-024-00649-3","DOIUrl":"https://doi.org/10.1007/s00200-024-00649-3","url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we consider the finite groups <span> <span>$$begin{aligned} H_{(t,l,m)}=langle a,b,c | a^t=b^l=c^m=1, [a,b]=c, [a,c]=[b,c]=1rangle . end{aligned}$$</span> </span>We obtain the generalized order-<em>k</em> Pell sequences and study their periods. We prove the period of the order-<em>k</em> Pell sequence divided the period of the generalized order-<em>k</em> Pell sequence in the Heisenberg group. Then, the generalized order-<em>k</em> Pell sequence in Heisenberg group are used to define new cyclic groups. As an application, these groups are used in encryption algorithms. </p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"New characterizations of generalized Boolean functions","authors":"Zhiyao Yang, Pinhui Ke, Zuling Chang","doi":"10.1007/s00200-024-00650-w","DOIUrl":"https://doi.org/10.1007/s00200-024-00650-w","url":null,"abstract":"<p>This paper focuses on providing the characteristics of generalized Boolean functions from a new perspective. We first generalize the classical Fourier transform and correlation spectrum into what we will call the <span>(rho)</span>-Walsh–Hadamard transform (<span>(rho)</span>-WHT) and the <span>(rho)</span>-correlation spectrum, respectively. Then a direct relationship between the <span>(rho)</span>-correlation spectrum and the <span>(rho)</span>-WHT is presented. We investigate the characteristics and properties of generalized Boolean functions based on the <span>(rho)</span>-WHT and the <span>(rho)</span>-correlation spectrum, as well as the sufficient (or also necessary) conditions and subspace decomposition of <span>(rho)</span>-bent functions. We also derive the <span>(rho)</span>-autocorrelation for a class of generalized Boolean functions on <span>((n+2))</span>-variables. Secondly, we present a characterization of a class of generalized Boolean functions with <span>(rho)</span>-WHT in terms of the classical Boolean functions. Finally, we demonstrate that <span>(rho)</span>-bent functions can be obtained from a class of composite construction if and only if <span>(rho =1)</span>. Some examples of non-affine <span>(rho)</span>-bent functions are also provided.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140097998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}