最小距离的几何形状

IF 0.6 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
John Pawlina, Ştefan O. Tohǎneanu
{"title":"最小距离的几何形状","authors":"John Pawlina, Ştefan O. Tohǎneanu","doi":"10.1007/s00200-024-00659-1","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({{\\mathbb {K}}}\\)</span> be any field, let <span>\\(X\\subset {\\mathbb P}^{k-1}\\)</span> be a set of <span>\\(n\\)</span> distinct <span>\\({{\\mathbb {K}}}\\)</span>-rational points, and let <span>\\(a\\ge 1\\)</span> be an integer. In this paper we find lower bounds for the minimum distance <span>\\(d(X)_a\\)</span> of the evaluation code of order <span>\\(a\\)</span> associated to <span>\\(X\\)</span>. The first results use <span>\\(\\alpha (X)\\)</span>, the initial degree of the defining ideal of <span>\\(X\\)</span>, and the bounds are true for any set <span>\\(X\\)</span>. In another result we use <span>\\(s(X)\\)</span>, the minimum socle degree, to find a lower bound for the case when <span>\\(X\\)</span> is in general linear position. In both situations we improve and generalize known results.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":"138 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of the minimum distance\",\"authors\":\"John Pawlina, Ştefan O. Tohǎneanu\",\"doi\":\"10.1007/s00200-024-00659-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({{\\\\mathbb {K}}}\\\\)</span> be any field, let <span>\\\\(X\\\\subset {\\\\mathbb P}^{k-1}\\\\)</span> be a set of <span>\\\\(n\\\\)</span> distinct <span>\\\\({{\\\\mathbb {K}}}\\\\)</span>-rational points, and let <span>\\\\(a\\\\ge 1\\\\)</span> be an integer. In this paper we find lower bounds for the minimum distance <span>\\\\(d(X)_a\\\\)</span> of the evaluation code of order <span>\\\\(a\\\\)</span> associated to <span>\\\\(X\\\\)</span>. The first results use <span>\\\\(\\\\alpha (X)\\\\)</span>, the initial degree of the defining ideal of <span>\\\\(X\\\\)</span>, and the bounds are true for any set <span>\\\\(X\\\\)</span>. In another result we use <span>\\\\(s(X)\\\\)</span>, the minimum socle degree, to find a lower bound for the case when <span>\\\\(X\\\\)</span> is in general linear position. In both situations we improve and generalize known results.</p>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00200-024-00659-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00200-024-00659-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

让\({{\mathbb {K}}}\) 是任意域,让\(X\subset {\mathbb P}^{k-1}\) 是一个由\(n\) 个不同的\({{\mathbb {K}}}\) 有理点组成的集合,让\(a\ge 1\) 是一个整数。在本文中,我们找到了与\(X\)相关的阶\(a)的评价码的最小距离\(d(X)_a\)的下限。第一个结果使用的是\(α (X)\),即\(X\)的定义理想的初始度,并且对于任何集合\(X\)来说这些边界都是真的。在另一个结果中,我们使用了最小社会度 \(s(X)\),为 \(X\)处于一般线性位置的情况找到了一个下界。在这两种情况下,我们都改进并推广了已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Geometry of the minimum distance

Geometry of the minimum distance

Let \({{\mathbb {K}}}\) be any field, let \(X\subset {\mathbb P}^{k-1}\) be a set of \(n\) distinct \({{\mathbb {K}}}\)-rational points, and let \(a\ge 1\) be an integer. In this paper we find lower bounds for the minimum distance \(d(X)_a\) of the evaluation code of order \(a\) associated to \(X\). The first results use \(\alpha (X)\), the initial degree of the defining ideal of \(X\), and the bounds are true for any set \(X\). In another result we use \(s(X)\), the minimum socle degree, to find a lower bound for the case when \(X\) is in general linear position. In both situations we improve and generalize known results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Algebra in Engineering Communication and Computing
Applicable Algebra in Engineering Communication and Computing 工程技术-计算机:跨学科应用
CiteScore
2.90
自引率
14.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems. Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology. Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal. On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信