{"title":"有限交换环上代数方程解法及其应用","authors":"Hermann Tchatchiem Kamche, Hervé Talé Kalachi","doi":"10.1007/s00200-024-00652-8","DOIUrl":null,"url":null,"abstract":"<p>Several problems in algebraic geometry and coding theory over finite rings are modeled by systems of algebraic equations. Among these problems, we have the rank decoding problem, which is used in the construction of public-key cryptosystems. A finite chain ring is a finite ring admitting exactly one maximal ideal and every ideal being generated by one element. In 2004, Nechaev and Mikhailov proposed two methods for solving systems of polynomial equations over finite chain rings. These methods used solutions over the residue field to construct all solutions step by step. However, for some types of algebraic equations, one simply needs partial solutions. In this paper, we combine two existing approaches to show how Gröbner bases over finite chain rings can be used to solve systems of algebraic equations over finite commutative rings. Then, we use skew polynomials and Plücker coordinates to show that some algebraic approaches used to solve the rank decoding problem and the MinRank problem over finite fields can be extended to finite principal ideal rings.</p>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":"18 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving systems of algebraic equations over finite commutative rings and applications\",\"authors\":\"Hermann Tchatchiem Kamche, Hervé Talé Kalachi\",\"doi\":\"10.1007/s00200-024-00652-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Several problems in algebraic geometry and coding theory over finite rings are modeled by systems of algebraic equations. Among these problems, we have the rank decoding problem, which is used in the construction of public-key cryptosystems. A finite chain ring is a finite ring admitting exactly one maximal ideal and every ideal being generated by one element. In 2004, Nechaev and Mikhailov proposed two methods for solving systems of polynomial equations over finite chain rings. These methods used solutions over the residue field to construct all solutions step by step. However, for some types of algebraic equations, one simply needs partial solutions. In this paper, we combine two existing approaches to show how Gröbner bases over finite chain rings can be used to solve systems of algebraic equations over finite commutative rings. Then, we use skew polynomials and Plücker coordinates to show that some algebraic approaches used to solve the rank decoding problem and the MinRank problem over finite fields can be extended to finite principal ideal rings.</p>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00200-024-00652-8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00200-024-00652-8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Solving systems of algebraic equations over finite commutative rings and applications
Several problems in algebraic geometry and coding theory over finite rings are modeled by systems of algebraic equations. Among these problems, we have the rank decoding problem, which is used in the construction of public-key cryptosystems. A finite chain ring is a finite ring admitting exactly one maximal ideal and every ideal being generated by one element. In 2004, Nechaev and Mikhailov proposed two methods for solving systems of polynomial equations over finite chain rings. These methods used solutions over the residue field to construct all solutions step by step. However, for some types of algebraic equations, one simply needs partial solutions. In this paper, we combine two existing approaches to show how Gröbner bases over finite chain rings can be used to solve systems of algebraic equations over finite commutative rings. Then, we use skew polynomials and Plücker coordinates to show that some algebraic approaches used to solve the rank decoding problem and the MinRank problem over finite fields can be extended to finite principal ideal rings.
期刊介绍:
Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems.
Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology.
Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal.
On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.