Building Services Engineering Research & Technology最新文献

筛选
英文 中文
Field investigations on operational performance of a novel radiant floor heating equipment applied in a typical office building 一种新型地板辐射供暖设备在典型办公楼中应用的现场调查
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-10-25 DOI: 10.1177/01436244211040685
Guinan Qiao, Yu Wang, Haiyang Yu, Yanju Li, Chunmei Guo
{"title":"Field investigations on operational performance of a novel radiant floor heating equipment applied in a typical office building","authors":"Guinan Qiao, Yu Wang, Haiyang Yu, Yanju Li, Chunmei Guo","doi":"10.1177/01436244211040685","DOIUrl":"https://doi.org/10.1177/01436244211040685","url":null,"abstract":"Low-temperature radiant heating systems are widely used in buildings with significant energy conservation, and they are convenient for the utilization of low-grade energy resources and household metering. In this study, the practical application of a novel radiant floor heating system (RFHS) in cold regions is investigated via construction of an experimental platform for energy consumption and thermal comfort in an office building in Tianjin, China. The results indicated that the novel radiant floor exhibits higher heating capacity and heat transfer coefficient than that of a traditional radiant floor. During the experiment, the average indoor temperature was 25.0°C in the office room and 22.7°C in the conference room, and all instantaneous indoor temperatures exceeded 21°C. To avoid local thermal discomfort, the supply water temperature of the floor can be appropriately decreased by 2–3°C for operation. Additionally, the power consumption of the system is decreased by approximately 11.4% if the indoor temperature is decreased to 20°C. Hence, a 10-h operation mode per day can be adopted in the office building for energy conservation given that the novel radiant floor exhibits superior initial response to intermittent operation. Practical application: In this study, the practical application effect of a new type of water-passing floor is examined in cold regions to provide a design reference for engineering applications. Therefore, it is expected that the results will be helpful to researchers for indoor environments, heating, ventilating, and air conditioning engineers, system manufacturers, and those who want to analyze the operational performance of a radiant floor heating system.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42355679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 103
A multi-objective optimization operation strategy for ice-storage air-conditioning system based on improved firefly algorithm 基于改进萤火虫算法的冰蓄冷空调系统多目标优化运行策略
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-10-10 DOI: 10.1177/01436244211045570
Xinwei Zhou, Junqi Yu, Wanhu Zhang, Anjun Zhao, Min Zhou
{"title":"A multi-objective optimization operation strategy for ice-storage air-conditioning system based on improved firefly algorithm","authors":"Xinwei Zhou, Junqi Yu, Wanhu Zhang, Anjun Zhao, Min Zhou","doi":"10.1177/01436244211045570","DOIUrl":"https://doi.org/10.1177/01436244211045570","url":null,"abstract":"Reasonable distribution of cooling load between chiller and ice tank is the key to realize the economical and energy-saving operation of ice-storage air-conditioning (ISAC) system. A multi-objective optimization model based on improved firefly algorithm (IFA) was established in this study to fully exploit the energy-saving potential and economic benefit of the ISAC system. The proposed model took the partial load rate of each chiller and the cooling ratio of the ice tank as optimization variables, and the lowest energy consumption loss rate and the lowest operating cost of the ISAC system were calculated. Chaotic logic self-mapping was used to initialize population to avoid falling into local optimum, and Cauchy mutation was used to increase the population’s diversity to improve the algorithm’s global search ability. The experimental results show that compared with the operation strategy based on constant proportion, particle swarm optimization (PSO) algorithm, and firefly algorithm (FA), the optimal operation strategy based on IFA can achieve more significant energy-saving and economic benefits. Meanwhile, the convergence accuracy and stability of the algorithm are significantly improved. Practical application: The optimized operation strategy of the ice-storage air-conditioning system can reduce energy loss and operating costs. The traditional operation strategies have the problems of low optimization precision and poor optimization effect. Therefore, this study presents an optimal operation strategy based on IFA. The convergence accuracy and stability of the algorithm are increased after the algorithm is improved. The operation strategy can get the maximum energy-saving effect and economic benefit of the ISAC system.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48244817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Delivering better building performance and lower carbon operation by intelligently employing today’s knowledge and tech 通过智能地运用当今的知识和技术,提供更好的建筑性能和更低的碳运行
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-09-28 DOI: 10.1177/01436244211052093
T. Dwyer
{"title":"Delivering better building performance and lower carbon operation by intelligently employing today’s knowledge and tech","authors":"T. Dwyer","doi":"10.1177/01436244211052093","DOIUrl":"https://doi.org/10.1177/01436244211052093","url":null,"abstract":"","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47632746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Energy, exergy and economic assessments of the dual-mode evaporative cooler for various international climate zones 不同国际气候带双模蒸发冷却器的能源、能源和经济评价
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-09-20 DOI: 10.1177/01436244211044921
Sarvesh Kashyap, J. Sarkar, Amitesh Kumar
{"title":"Energy, exergy and economic assessments of the dual-mode evaporative cooler for various international climate zones","authors":"Sarvesh Kashyap, J. Sarkar, Amitesh Kumar","doi":"10.1177/01436244211044921","DOIUrl":"https://doi.org/10.1177/01436244211044921","url":null,"abstract":"The conventional desert cooler is effective for dry seasons and the regenerative evaporative cooler (REC) is an effective device for humid seasons in composite climate zones. Hence, the dual-mode evaporative cooler (a two-in-one device) is an intelligent choice for air conditioning, which can operate in both direct and regenerative modes depending on the seasonal climatic condition. The exergy and economic analyses of this novel device for global climatic conditions are performed to check the suitability in different regions of the world. An experimental prototype of a dual-mode evaporative cooler is developed and tested to validate the simulation model. The effectiveness, coefficient of performance, exergy destruction, exergy efficiency, operating cost, and specific total cost (STC) are evaluated for both (direct and regenerative) modes of operation. The annual and month-wise performances of dual-mode evaporative cooler have been assessed for five cities of international climate zones. The operating cost of both modes is compared by considering electricity charges in different countries. The dual-mode device is compared with the single-mode device as well. The specific cost is similar for both modes in most of the ASHRAE climatic zones. The present study reveals that significant energy and cost savings are possible by using the dual-mode evaporative cooler. Practical application: This article considers the application of a dual-mode evaporative cooler (direct as well as regenerative mode) in different climate zones and, through investigating the exergy and economic performances, allows designers and operators to understand the potential benefits of employing various operating modes in particular climates.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46067173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Implementation of new high-rise building staircase pressure differential system improvements 实施新建高层建筑楼梯压差系统的改进
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-09-17 DOI: 10.1177/01436244211044669
Dorota Brzezińska, M. Fryda
{"title":"Implementation of new high-rise building staircase pressure differential system improvements","authors":"Dorota Brzezińska, M. Fryda","doi":"10.1177/01436244211044669","DOIUrl":"https://doi.org/10.1177/01436244211044669","url":null,"abstract":"The following technical note demonstrates full-scale staircase test results of the pressure differential system improvement method described by Fryda et al. in 2021. It is a continuation of experimental research on the impact of the escape route’s leakages on the pressure differential systems for staircases. Based on the lab experiments, it has been found that an additional throttle of the leak implemented in the pressure differential system improves its effectiveness and allows it to be more precisely adjusted to the required overpressure. The results presented in this article have confirmed this hypothesis and provided the opportunity to apply for new patent solutions of a special throttle of the leak control and pressure regulating system. The proposed new leakage-based improvements could increase the efficiency of existing systems based on proportional-integral-derivative controller and could also be installed in new buildings.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45879099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The impact of deep learning–based equipment usage detection on building energy demand estimation 基于深度学习的设备使用检测对建筑能源需求估算的影响
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-09-01 DOI: 10.1177/01436244211034737
S. Wei, P. Tien, Yupeng Wu, J. Calautit
{"title":"The impact of deep learning–based equipment usage detection on building energy demand estimation","authors":"S. Wei, P. Tien, Yupeng Wu, J. Calautit","doi":"10.1177/01436244211034737","DOIUrl":"https://doi.org/10.1177/01436244211034737","url":null,"abstract":"As external temperatures and internal gains from equipment rise, office buildings’ cooling demand and issues are likely to increase. Solutions such as demand-driven controls can help minimise energy consumption and maintain thermal comfort in buildings by coordinating the real-time heating, ventilation and air-conditioning (HVAC) use to the requirements of the conditioned spaces. The present study introduces a real-time equipment usage detection and recognition approach for demand-driven controls using a deep learning method. A Faster R-CNN model was trained and deployed to a camera. The performance of this model was assessed through different evaluation metrics. Based on the initial field experiment results, a detection accuracy of 76.21% was achieved. To investigate the impact of the proposed approach on building heating and cooling energy demand, the case study building was modelled and simulated. The results showed that the deep learning–based method predicted up to 35.95% lower internal heat gains compared to static or ‘fixed’ schedules based on the set conditions. Practical Application: As the appliances and equipment in building spaces contribute to the internal heat gains, their usage can influence the building energy demand and indoor thermal environment. Linking equipment usage with occupants’ presence in space may not be fully accurate and may lead to the over- or under-estimation of heat emissions, especially when the space is unoccupied, and the equipment is powered ON or the opposite. This approach can be integrated with demand-driven controls for HVAC systems, which can minimise unnecessary building energy consumption while maintaining a comfortable indoor environment using computer vision and deep learning detection and recognition methods.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/01436244211034737","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42286318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing selected ‘unknown unknowns’ of building services engineering 揭示选定的建筑服务工程的“未知的未知”
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-09-01 DOI: 10.1177/01436244211041803
Timothy L. Dwyer
{"title":"Revealing selected ‘unknown unknowns’ of building services engineering","authors":"Timothy L. Dwyer","doi":"10.1177/01436244211041803","DOIUrl":"https://doi.org/10.1177/01436244211041803","url":null,"abstract":"","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41757172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domestic heating with compact combination hybrids (gas boiler and heat pump): A simple English stock model of different heating system scenarios 家庭供暖与紧凑的组合混合(燃气锅炉和热泵):一个简单的英文股票模型不同的供暖系统方案
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-08-22 DOI: 10.1177/01436244211040449
G. Bennett, S. Watson, Grant Wilson, T. Oreszczyn
{"title":"Domestic heating with compact combination hybrids (gas boiler and heat pump): A simple English stock model of different heating system scenarios","authors":"G. Bennett, S. Watson, Grant Wilson, T. Oreszczyn","doi":"10.1177/01436244211040449","DOIUrl":"https://doi.org/10.1177/01436244211040449","url":null,"abstract":"The heat decarbonisation challenge remains substantial, competing low carbon solutions such as hydrogen and heat pumps (HPs) and the entrenched position of gas combination boilers create inertia in many markets. Hybrid appliances which can directly replace gas boilers may provide a low disruption, low-cost pathway to net zero in gas-reliant markets. Emerging compact combination (CoCo) hybrid heating appliances which combine a gas combi boiler and a small HP unit in one appliance have been modelled for the English housing stock across a range of different scenarios. CoCo hybrids offer sizeable energy demand reduction of up to 60% compared to current gas boilers, also reducing peak electrical demand by 10 GW compared to air source heat pumps. The control strategy for switching between HP and gas boiler is key in determining the scale of demand reduction. Modelling sensitivity to the HP size within CoCo hybrids showed that a 50% reduction in energy demand compared to gas boilers could be achieved with a standard 2.5 kW HP. A lack of clarity in regulation and policy incentives for hybrids exists. To drive innovation and performance improvement, product regulation for hybrids needs to be improved to support decarbonisation of heat with this promising technology. Practical Application Convenient, low disruption heat decarbonisation technology is crucial to the speed of deployment necessary to achieve net zero. This article defines the size of HP necessary to achieve rapid low disruption impact and distinguishes the types of compact hybrid which can deliver the highest decarbonisation impact while minimising in house disruption and the electrical grid impact.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47339880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring and modeling moisture environment in underground metro stations during commissioning stage: A case study 调试阶段地下地铁站水分环境的测量和建模:一个案例研究
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-08-18 DOI: 10.1177/01436244211038863
Yanzhe Yu, Shijun You, Huan Zhang, Tianzheng Ye, Yaran Wang, C. Tang, Shen Wei
{"title":"Measuring and modeling moisture environment in underground metro stations during commissioning stage: A case study","authors":"Yanzhe Yu, Shijun You, Huan Zhang, Tianzheng Ye, Yaran Wang, C. Tang, Shen Wei","doi":"10.1177/01436244211038863","DOIUrl":"https://doi.org/10.1177/01436244211038863","url":null,"abstract":"Due to the humid underground environment, underground metro stations often have internal condensation issues, especially during the commissioning and initial operation phases, and these issues will have a negative impact on the equipment operation and building life. This study aims to solve the issue by 1) identifying common areas with condensation risks based on on-site measurements and numerical simulation methods, and 2) proposing effective dehumidification solutions for the moisture control of stations. By on-site investigating the characteristics of the station’s moisture environment and numerical assessing the effects of two different dehumidification strategies, it has been found that 1) for Tianjin, during most times in summer, the air temperature of the station in the commissioning phase was maintained relatively stable, but with significantly changing humidity; 2) the relative humidity on the platforms was higher than 80% for almost 30% of the testing time, and the surface of the upper structure of platform doors having a high risk of condensation; 3) the dehumidification effect of industrial dehumidifiers was found to be better than that of increasing exhaust air volume. The authors hope that the research could aid the decision on dehumidification strategies and provide guidance for further moisture control in underground stations. Practical Application This article analyzed the moisture environment of the underground metro stations in the commissioning phase and conducted a numerical approach to assess the condensation risk. Potential dehumidification solutions including increasing the exhaust air volume and using industrial dehumidifiers have been proposed, and their effects have been investigated and compared. The authors hope that this research can aid the decision on dehumidification strategies for facilities maintenance and provide a guidance to further moisture control in underground stations.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49472356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Analysis of the characteristics of noise from substations in buildings 建筑物变电站噪声特性分析
IF 1.7 4区 工程技术
Building Services Engineering Research & Technology Pub Date : 2021-08-05 DOI: 10.1177/01436244211035672
Xinyu Liu, Junjie Liu, Junyi He, Jinxian Zhang
{"title":"Analysis of the characteristics of noise from substations in buildings","authors":"Xinyu Liu, Junjie Liu, Junyi He, Jinxian Zhang","doi":"10.1177/01436244211035672","DOIUrl":"https://doi.org/10.1177/01436244211035672","url":null,"abstract":"The urbanization has resulted in an increasing number of transformer stations, which has resulted insignificant building noise problems. However, noise problems persist because of inadequate noise characterization and the use of imperfect noise evaluation indexes for centralized substations. Based on this problem, a transformer vibration noise coupling analysis method based on empirical mode decomposition (EMD) and spectrum analysis is proposed in this study. The proposed method accurately and effectively screens and characterizes transformer noise and provides a theoretical basis for transformer noise reduction. To verify the effectiveness of the proposed method, a transformer was reconstructed as an example. It was found that the low-frequency noise from the transformer was mainly caused by vibrations with a frequency below 500 Hz, particularly frequencies of 300 Hz and 100 Hz and 50 Hz. Through the calculation and analysis of eigenvalues, the noise reduction measures focusing on vibration reduction were proposed. In the end, a noise reduction of 10 dB was achieved, which meets the comfort requirements. This method can accurately and effectively identify the characteristics of transformer noise, which makes up for the insufficiency of transformer characteristics analysis in the past. Provide guidance for perfecting transformer noise evaluation index. Practical implication: The noise problem caused by substations is getting more and more serious. Conventional noise detection and noise reduction methods can no longer meet people’s requirements for sound comfort. The coupling analysis method of vibration and noise based on EMD and spectrum analysis proposed in this study can effectively extract the characteristics of transformer noise. It provides theoretical support for the noise reduction transformation of transformers, and solves the problem that the current engineering noise reduction transformation has no theoretical basis. Noise characteristic analysis can make up for the shortcomings of existing acoustic comfort indicators that only use sound pressure level as the evaluation indicator.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/01436244211035672","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45268239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信