{"title":"Existence of Heteroclinic and Saddle type solutions for a class of quasilinear problems in whole ℝ2","authors":"C. O. Alves, Renan J. S. Isneri, P. Montecchiari","doi":"10.1142/s0219199722500614","DOIUrl":"https://doi.org/10.1142/s0219199722500614","url":null,"abstract":"","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42612341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple positive and sign-changing solutions for a class of kirchhoff equations","authors":"Benniao Li, W. Long, Aliang Xia","doi":"10.1142/s0219199722500602","DOIUrl":"https://doi.org/10.1142/s0219199722500602","url":null,"abstract":"","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44640992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behavior of the poincare constant along the polchinski renormalization flow","authors":"Jordan Serres","doi":"10.1142/s0219199723500359","DOIUrl":"https://doi.org/10.1142/s0219199723500359","url":null,"abstract":"We control the behavior of the Poincar{'e} constant along the Polchinski renormalization flow using a dynamic version of $Gamma$-calculus. We also treat the case of higher order eigenvalues. Our method generalizes a method introduced by B. Klartag and E. Putterman to analyze the evolution of log-concave distributions along the heat flow. Furthermore, we apply it to general $Phi$ 4-measures and discuss the interpretation in terms of transport maps.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45526630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Blowup and ILL-Posedness for the Complex, Periodic KDV Equation","authors":"J. Bona, F. Weissler","doi":"10.1142/s0219199722500444","DOIUrl":"https://doi.org/10.1142/s0219199722500444","url":null,"abstract":"","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44899448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A steklov version of the torsional rigidity","authors":"L. Brasco, Mar'ia de Mar Gonz'alez, M. Ispizua","doi":"10.1142/s0219199723500372","DOIUrl":"https://doi.org/10.1142/s0219199723500372","url":null,"abstract":"Motivated by the connection between the first eigenvalue of the Dirichlet-Laplacian and the torsional rigidity, the aim of this paper is to find a physically coherent and mathematically interesting new concept for boundary torsional rigidity, closely related to the Steklov eigenvalue. From a variational point of view, such a new object corresponds to the sharp constant for the trace embedding of $W^{1,2}(Omega)$ into $L^1(partialOmega)$. We obtain various equivalent variational formulations, present some properties of the state function and obtain some sharp geometric estimates, both for planar simply connected sets and for convex sets in any dimension.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43596438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinite families of homogeneous bismut ricci flat manifolds","authors":"F. Podestà, Alberto Raffero","doi":"10.1142/S0219199722500754","DOIUrl":"https://doi.org/10.1142/S0219199722500754","url":null,"abstract":". Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order 4 and (up to coverings) can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64399644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the exterior Dirichlet problem for Hessian type fully nonlinear elliptic equations","authors":"Xiaoliang Li, Cong Wang","doi":"10.1142/S0219199722500821","DOIUrl":"https://doi.org/10.1142/S0219199722500821","url":null,"abstract":". We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form f ( λ ( D 2 u )) = g ( x ) , with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli–Nirenberg–Spruck [8], Trudinger [35] and many others, and there had been significant discussions on the solv- ability of the classical Dirichlet problem via the continuity method, under the assumption that f is a concave function. In this paper, based on the Perron’s method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming f to satisfy certain structure condi- tions as in [8, 35] but without requiring the concavity of f . The equations in our setting may embrace the well-known Monge–Amp`ere equations, Hessian equations and Hessian quotient equations as special cases.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48193946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bifurcation into spectral gaps for strongly indefinite Choquard equations","authors":"Huxiao Luo, B. Ruf, C. Tarsi","doi":"10.1142/s0219199723500013","DOIUrl":"https://doi.org/10.1142/s0219199723500013","url":null,"abstract":": We consider the semilinear elliptic equations where I α is a Riesz potential, p ∈ ( N + αN , N + α N − 2 ), N ≥ 3, and V is continuous periodic. We assume that 0 lies in the spectral gap ( a, b ) of − ∆ + V . We prove the existence of infinitely many geometrically distinct solutions in H 1 ( R N ) for each λ ∈ ( a, b ), which bifurcate from b if N + αN < p < 1 + 2+ αN . Moreover, b is the unique gap-bifurcation point (from zero) in [ a, b ]. When λ = a , we find infinitely many geometrically distinct solutions in H 2 loc ( R N ). Final remarks are given about the eventual occurrence of a bifurcation from infinity in λ = a . 35Q55, 47J35.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.6,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44658255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}