Hessian型全非线性椭圆方程的外狄利克雷问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaoliang Li, Cong Wang
{"title":"Hessian型全非线性椭圆方程的外狄利克雷问题","authors":"Xiaoliang Li, Cong Wang","doi":"10.1142/S0219199722500821","DOIUrl":null,"url":null,"abstract":". We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form f ( λ ( D 2 u )) = g ( x ) , with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli–Nirenberg–Spruck [8], Trudinger [35] and many others, and there had been significant discussions on the solv- ability of the classical Dirichlet problem via the continuity method, under the assumption that f is a concave function. In this paper, based on the Perron’s method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming f to satisfy certain structure condi- tions as in [8, 35] but without requiring the concavity of f . The equations in our setting may embrace the well-known Monge–Amp`ere equations, Hessian equations and Hessian quotient equations as special cases.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the exterior Dirichlet problem for Hessian type fully nonlinear elliptic equations\",\"authors\":\"Xiaoliang Li, Cong Wang\",\"doi\":\"10.1142/S0219199722500821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form f ( λ ( D 2 u )) = g ( x ) , with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli–Nirenberg–Spruck [8], Trudinger [35] and many others, and there had been significant discussions on the solv- ability of the classical Dirichlet problem via the continuity method, under the assumption that f is a concave function. In this paper, based on the Perron’s method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming f to satisfy certain structure condi- tions as in [8, 35] but without requiring the concavity of f . The equations in our setting may embrace the well-known Monge–Amp`ere equations, Hessian equations and Hessian quotient equations as special cases.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S0219199722500821\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219199722500821","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

。我们处理了一类形式为f (λ (d2 u)) = g (x)的完全非线性椭圆方程的外部Dirichlet问题,该方程在无穷远处具有规定的渐近行为。Caffarelli-Nirenberg-Spruck [8], Trudinger[8]等人对这类方程进行了广泛的研究,并在假设f为凹函数的情况下,对经典Dirichlet问题用连续性方法的可解性进行了有意义的讨论。本文基于Perron方法,假设f满足[8,35]中的某些结构条件,但不需要f的凹性,建立了方程黏度解的外部存在唯一性结果。我们设置的方程可以包括著名的Monge-Amp 'ere方程,Hessian方程和Hessian商方程作为特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the exterior Dirichlet problem for Hessian type fully nonlinear elliptic equations
. We treat the exterior Dirichlet problem for a class of fully nonlinear elliptic equations of the form f ( λ ( D 2 u )) = g ( x ) , with prescribed asymptotic behavior at infinity. The equations of this type had been studied extensively by Caffarelli–Nirenberg–Spruck [8], Trudinger [35] and many others, and there had been significant discussions on the solv- ability of the classical Dirichlet problem via the continuity method, under the assumption that f is a concave function. In this paper, based on the Perron’s method, we establish an exterior existence and uniqueness result for viscosity solutions of the equations, by assuming f to satisfy certain structure condi- tions as in [8, 35] but without requiring the concavity of f . The equations in our setting may embrace the well-known Monge–Amp`ere equations, Hessian equations and Hessian quotient equations as special cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信