Infinite families of homogeneous bismut ricci flat manifolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
F. Podestà, Alberto Raffero
{"title":"Infinite families of homogeneous bismut ricci flat manifolds","authors":"F. Podestà, Alberto Raffero","doi":"10.1142/S0219199722500754","DOIUrl":null,"url":null,"abstract":". Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order 4 and (up to coverings) can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0219199722500754","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

Abstract

. Starting from compact symmetric spaces of inner type, we provide infinite families of compact homogeneous spaces carrying invariant non-flat Bismut connections with vanishing Ricci tensor. These examples turn out to be generalized symmetric spaces of order 4 and (up to coverings) can be realized as minimal submanifolds of the Bismut flat model spaces, namely compact Lie groups. This construction generalizes the standard Cartan embedding of symmetric spaces.
齐次双利基平面流形的无穷族
. 从内型紧致对称空间出发,给出了无限族的紧致齐次空间,它们携带不变非平坦Bismut连接,且具有消失的Ricci张量。这些例子证明是4阶的广义对称空间,并且(直到覆盖)可以被实现为Bismut平面模型空间的最小子流形,即紧李群。这种构造推广了对称空间的标准卡坦嵌入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信