Computers & Structures最新文献

筛选
英文 中文
Multi-material topology optimization of phononic crystal considering isotropic/anisotropic materials 考虑各向同性/各向异性材料的声波晶体多材料拓扑优化
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-19 DOI: 10.1016/j.compstruc.2024.107479
{"title":"Multi-material topology optimization of phononic crystal considering isotropic/anisotropic materials","authors":"","doi":"10.1016/j.compstruc.2024.107479","DOIUrl":"10.1016/j.compstruc.2024.107479","url":null,"abstract":"<div><p>Multi-material phononic crystals hold promise for manipulating elastic wave propagation, enhancing the rigidity of the host structure, and realizing multifunctionality, including electric conduction, sound insulation, and heat diffusion. This paper presents a multi-material topology optimization pipeline for phononic crystal design, incorporating both isotropic and anisotropic materials. First, the dispersion theory for elastic wave propagation in periodic structures is presented. Then a novel interpolation function is proposed for multi-material topology optimization by using a variant of the projection operator. Finally, both isotropic and anisotropic materials are utilized to demonstrate the effectiveness of the proposed method for multi-material phononic crystal design when compared with SIMP-based structures. The numerical analysis indicates that the proposed method performs well in optimizing the phononic structure with metal composite materials.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141729220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design-informed generative modelling of skeletal structures using structural optimization 利用结构优化技术为骨骼结构建立设计信息生成模型
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-18 DOI: 10.1016/j.compstruc.2024.107474
{"title":"Design-informed generative modelling of skeletal structures using structural optimization","authors":"","doi":"10.1016/j.compstruc.2024.107474","DOIUrl":"10.1016/j.compstruc.2024.107474","url":null,"abstract":"<div><p>Although various structural optimization techniques have a sound mathematical basis, the structural robustness and practical constructability of optimal designs pose a great challenge in the manufacturing stage. This paper presents an automated novel approach stemming from structural optimization and engineering principles, where discrete members of the structurally optimized designs are driven towards optimal utilization. The developed workflow unifies topology, layout and size optimization in a single parametric platform, which subsequently outputs a ready-to-manufacture CAD skeletal model which can be manufactured either additively or by assembly. All such outputs are checked and validated for structural requirements; strength, stiffness and stability in accordance with standard codes of practice. In the implementations, first, a topology-optimal model is generated and converted to a one-pixel-wide chain model using skeletonization. Herein, this paper uses a novel efficient method to extract the skeleton by using pixel-padding near the domain borders. Secondly, a spatial frame is extracted from the skeleton for its member size and layout optimization. Finally, the CAD model is generated using constructive solid geometry trees and the structural integrity of each member is assessed to ensure structural robustness prior to manufacturing. Various examples presented in the paper showcase the validity of the presented workflow across various structural engineering applications.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic topology optimization of structure weakly coupled with two-phase flow 弱耦合两相流结构的动态拓扑优化
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-17 DOI: 10.1016/j.compstruc.2024.107471
{"title":"Dynamic topology optimization of structure weakly coupled with two-phase flow","authors":"","doi":"10.1016/j.compstruc.2024.107471","DOIUrl":"10.1016/j.compstruc.2024.107471","url":null,"abstract":"<div><p>This study presents a new topology optimization method for transient two-phase fluid-structure interaction (FSI) problem. From a topology optimization point of view, it is formidable challenging to consider the mutual coupling with structure and two-phase flow and the evolution of sharp interface between two-phase flow (tracking interface). To tackle these formidable issues, the monolithic design approach incorporating with the deformation tensor is applied and the simulation of the two-phase flow is carried out with the volume of fluid (VOF). The spatially varying design variables in topology optimization determines whether the corresponding domains or elements are solid or fluid (two-phase flow) to maximize or minimize objective function. To simplify the coupling procedure and maintain the numerical convergence, the one-way coupling between two-phase fluid and structure is assumed rather than the two-way coupling. To carry out the topology optimization, the Darcy's force determined by the design variable is added to the Navier-Stokes equation and the Young's modulus and the structural density are also interpolated with respect to the design variables. In addition, the phase-field equation in the VOF method is also modified to take into account the evolution of the design variable and the front of the phase field value. To investigate the effect of the two-phase fluid-structure interaction, several transient two-dimensional problems are considered.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving stability in hybrid fire testing: Advancements in analysis method and software implementation 提高混合火灾试验的稳定性:分析方法和软件实施的进步
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-16 DOI: 10.1016/j.compstruc.2024.107473
{"title":"Improving stability in hybrid fire testing: Advancements in analysis method and software implementation","authors":"","doi":"10.1016/j.compstruc.2024.107473","DOIUrl":"10.1016/j.compstruc.2024.107473","url":null,"abstract":"<div><p>In large-scale structural fire resistance tests, the interaction between the individual elements and the surrounding structure causes discrepancies in behaviour compared to single-element fire tests. Large-scale tests of real structures are challenging due to financial and time limitations. To bridge this gap, the concept of “Hybrid Fire Testing (HFT)” emerges, where a portion of the structural system (i.e., physical substructure) is experimentally tested while the remaining structure (i.e., numerical substructure) is analyzed numerically. The primary challenges in HFT involve ensuring stability throughout the analysis by considering the varying stiffness of the fire-exposed element during the test and establishing a versatile communication platform between the physical substructure (PS) and numerical substructure (NS) components. This paper presents a comprehensive HFT framework, implemented within a user-friendly software interface, facilitating both virtual and experimental testing. The software incorporates a new method addressing stability concerns by predicting PS stiffness during the test, achieving convergence within a limited number of iterations. Additionally, the framework includes a communication platform utilizing internet protocols (IP) and COM ports for rapid and easy connection to diverse experimental control systems and finite element software packages. The functionality of the developed software is validated through its successful application in an HFT conducted on a 3-story steel structure within a simulated environment. Both force-controlled and displacement-controlled approaches confirm the method’s adaptivity to the employed test procedures.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924002025/pdfft?md5=5ac2702d8f4536f6fb764a57eff1c068&pid=1-s2.0-S0045794924002025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141629991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Homogenized model of peristaltic deformation driven flows in piezoelectric porous media 压电多孔介质中蠕动变形驱动流动的均质化模型
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-16 DOI: 10.1016/j.compstruc.2024.107470
{"title":"Homogenized model of peristaltic deformation driven flows in piezoelectric porous media","authors":"","doi":"10.1016/j.compstruc.2024.107470","DOIUrl":"10.1016/j.compstruc.2024.107470","url":null,"abstract":"<div><p>The paper presents a new type of weakly nonlinear two-scale model of controllable periodic porous piezoelectric structures saturated by Newtonian fluids. The flow is propelled by peristaltic deformation of microchannels which is induced due to piezoelectric segments embedded in the microstructure and locally actuated by voltage waves. The homogenization is employed to derive a macroscopic model of the poroelastic medium with effective parameters modified by piezoelectric properties of the skeleton. To capture the peristaltic pumping, the nonlinearity associated with deforming configuration must be respected. In the macroscopic model, this nonlinearity is introduced through homogenized coefficients depending on the deforming micro-configurations. For this, linear expansions based on the sensitivity analysis of the homogenized coefficients with respect to deformation induced by the macroscopic quantities are employed. This enables to avoid the two-scale tight coupling of the macro- and microproblems otherwise needed in nonlinear problems. The derived reduced-order model is implemented and verified using direct numerical simulations of the periodic heterogeneous medium. Numerical results demonstrate the peristaltic driven fluid propulsion in response to the electric actuation and the efficiency of the proposed treatment of the nonlinearity. The paper shows new perspectives in homogenization-based computationally efficient modelling of weakly nonlinear problems where continuum microstructures are perturbed by coupled fields.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An analyzer-surrogate-hybrid optimization framework for three-dimensional functionally graded material distribution 三维功能分级材料分布的分析器-代用-混合优化框架
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-15 DOI: 10.1016/j.compstruc.2024.107472
{"title":"An analyzer-surrogate-hybrid optimization framework for three-dimensional functionally graded material distribution","authors":"","doi":"10.1016/j.compstruc.2024.107472","DOIUrl":"10.1016/j.compstruc.2024.107472","url":null,"abstract":"<div><p>This paper presents a new optimization framework in which the structural analyzer (isogeometric analysis–IGA) and data-driven surrogate model (deep neural network–DNN) are sequentially and repeatedly employed as the evaluation function in the optimization process of the computationally heavy problem of three-dimensional material distribution optimization in functionally graded (FG) plates. The optimization process starts with IGA normally, and the key point is to collect the evaluated candidates as data to build DNNs as surrogates predicting the plate behavior. Then, in the surrogate-assisted phase, based on the best predicted value, one more IGA analysis could be performed to find a new truly best candidate solution. This is also to track the surrogates' accuracy, which is another key feature of the proposed framework. When the prediction becomes less accurate, the optimization process is back to using IGA, more data is collected, and the whole procedure is repeated. Compliance minimization in FG plates under static bending is considered with various plate geometries. Numerical results confirm that the proposed recurrent optimization framework reduces up to 38% computational time whilst ensuring that the best candidate solution is always exact and of highest optimality.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new two-stage simulation approach for biaxial wheel fatigue test by introducing identified composite tire model 引入识别复合轮胎模型的双轴车轮疲劳试验两阶段模拟新方法
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-15 DOI: 10.1016/j.compstruc.2024.107475
{"title":"A new two-stage simulation approach for biaxial wheel fatigue test by introducing identified composite tire model","authors":"","doi":"10.1016/j.compstruc.2024.107475","DOIUrl":"10.1016/j.compstruc.2024.107475","url":null,"abstract":"<div><p>To improve accuracy and convergence of biaxial wheel fatigue simulation with coupled nonlinearity, we propose a two-stage approach based on a composite tire model. The tire model is calibrated through an identification procedure, wherein the actual tire stiffness characteristics are matched, effectively addressing the difficulty in lack of tire structure and materials information. Based on the identified tire model, restart analysis algorithm is employed to decouple the biaxial simulation into a two-stage analysis, where wheel deformability is sequentially considered. At the first stage, large deformation of the loaded tire is calculated by modeling the wheel as a rigid part. Then the deformation and stress states of tire are maintained at the second stage, and the wheel elasticity is recovered for stress calculation. Compared to a single-stage direct method, the proposed method significantly reduces computational costs, while exhibiting only a minor stress discrepancy on the wheel rim. Finally, experimental results show that the present method not only ensures high accuracy in predicting stresses of the wheel disc, but also effectively reduces errors on the wheel rim region. It is convinced that the proposed method provides an efficient and reliable means for the comprehensive evaluation of wheel strength in biaxial fatigue tests.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141623532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Definition of a beam-like reduced order model element by means of a mixed dimensional coupling 通过混合维耦合定义梁状减阶模型元素
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-11 DOI: 10.1016/j.compstruc.2024.107466
Francesc Turon , Fermin Otero , Alex Ferrer , Xavier Martinez
{"title":"Definition of a beam-like reduced order model element by means of a mixed dimensional coupling","authors":"Francesc Turon ,&nbsp;Fermin Otero ,&nbsp;Alex Ferrer ,&nbsp;Xavier Martinez","doi":"10.1016/j.compstruc.2024.107466","DOIUrl":"https://doi.org/10.1016/j.compstruc.2024.107466","url":null,"abstract":"<div><p>The use of Reduced Dimensional Models (RDM) discretized like beams, plates and shell elements drastically decreases the computational cost of solving a full 3D elastic problem with a Finite Element Method (FEM). However, its kinematic assumptions are only applicable to bodies with regular sections or continuous layouts. For the correct analysis of irregular regions, it is necessary to rely on bi-dimensional or solid models that fully reproduce the geometry of the body and its behavior but have a much higher computational cost. The Mixing Dimensional Coupling (MDC) technique allows linking models discretized with elements of different topologies, allowing the possibility of considering the most cost-effective model in each region. This coupling takes place at the interface that delimits both models and relies on the equilibrium of work and reactions on its two faces. In this paper, the formulation is presented for coupling beams with laminar sections and 2D Plane-Stress (PS) models demonstrating its proper behavior. Finally, this coupling is used for defining a new beam element, the Beam-Like Reduced Order Model (BLROM), which is obtained from a Plane-Stress model of their longitudinal section.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045794924001950/pdfft?md5=23a0ec88dcda71ea19633ab605ad41b0&pid=1-s2.0-S0045794924001950-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exact dynamic stiffness formulations and vibration response analysis of orthotropic viscoelastic plate built-up structures 正交粘弹性板结构的精确动态刚度计算和振动响应分析
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-09 DOI: 10.1016/j.compstruc.2024.107455
Xiao Liu , Xiang Liu , Sondipon Adhikari
{"title":"Exact dynamic stiffness formulations and vibration response analysis of orthotropic viscoelastic plate built-up structures","authors":"Xiao Liu ,&nbsp;Xiang Liu ,&nbsp;Sondipon Adhikari","doi":"10.1016/j.compstruc.2024.107455","DOIUrl":"https://doi.org/10.1016/j.compstruc.2024.107455","url":null,"abstract":"<div><p>The analytical damped dynamic stiffness formulation is developed for the dynamic response analysis of orthotropic viscoelastic plate built-up structures with a general frequency-dependent damping model. The governing differential equation in the frequency domain is established, which allows for the direct introduction of frequency-dependent damping models by considering internal (material) and external (environmental) damping. The adopted viscoelastic damping model is sufficiently general to describe various types of damping, including viscous or non-viscous, integer or fractional order models. Then, the exact damped dynamic stiffness formulations for both in-plane and out-of-plane vibrations of plate elements are developed. Arbitrarily distributed excitations can be applied to the plate nodal boundaries based on the analytical Fourier-type forward and inverse transforms. The dynamic response analysis of the viscoelastic plate is carried out, which verifies the accuracy and efficiency of this method within the broadband frequency range. The numerical results serve as a valuable reference and can be used as benchmark solutions. Accurate and profound comprehension of the dynamical behavior of viscoelastic plates is a key task in designing these structures, and also optimizing their vibrational behavior. This method offers a powerful tool for representing the broadband dynamics of viscoelastic plate structures, utilizing very few degrees of freedom.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology optimization of fiber-reinforced structures with discrete fiber orientations for additive manufacturing 用于增材制造的具有离散纤维取向的纤维增强结构的拓扑优化
IF 4.4 2区 工程技术
Computers & Structures Pub Date : 2024-07-08 DOI: 10.1016/j.compstruc.2024.107468
Md Mohaiminul Islam, Ling Liu
{"title":"Topology optimization of fiber-reinforced structures with discrete fiber orientations for additive manufacturing","authors":"Md Mohaiminul Islam,&nbsp;Ling Liu","doi":"10.1016/j.compstruc.2024.107468","DOIUrl":"https://doi.org/10.1016/j.compstruc.2024.107468","url":null,"abstract":"<div><p>Additive manufacturing (AM) has revolutionized the way we design and manufacture lightweight composite structures with complex geometries and extraordinary performance. In composite AM, fibers are often steered within the plane of printing and sometimes at predefined discrete angles. Hence, designing structures for AM must consider such manufacturing constraints along with the concurrent optimization of structures and fiber orientations. Herein, we propose a method that uses a penalized normal distribution (PND) function to design the fiber orientation based on predefined discrete angles. By discretizing a continuous design variable and penalizing the effective properties, the method effectively drives the design variable to converge to one of the target candidates with low deviations. Using only one design variable at each spot, the method is scalable and can be easily adapted as the number of candidates changes. By coupling the discrete angle optimization with structural optimization, the multiscale method concurrently optimizes the structural topology with fiber orientations considering AM constraints. Numerical examples demonstrate the advantages of this framework and its extension to solving 3D problems.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141593811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信