Near-fault ground motion synthesis based on conditional generation adversarial network

IF 4.4 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Guobin Lin, Xiaobin Hu
{"title":"Near-fault ground motion synthesis based on conditional generation adversarial network","authors":"Guobin Lin, Xiaobin Hu","doi":"10.1016/j.compstruc.2025.107740","DOIUrl":null,"url":null,"abstract":"Near-fault (NF) ground motions usually have high-amplitude and long-period velocity pulses that might cause excessive responses in flexible structures. However, the number of recorded NF ground motions is very limited and hinders related research in earthquake engineering. In this paper, we develop a conditional generative adversarial network (CGAN) model, namely Ep2NgmGAN, to generate NF ground motions under given engineering parameters. Different from the traditional CGAN model, it inputs the label by introducing a label embedding module. In addition, a knowledge-enhanced module is adopted to enable the model to capture prior knowledge about NF ground motions. Using the strategy suggested in this study, the Ep2NgmGAN is trained and tested on the dataset constructed using the recorded NF ground motions and generated ones based on a mathematical method. Finally, numerical experiments and comparative investigations are carried out to comprehensively evaluate the performance of Ep2NgmGAN. The results indicate that the label embedding module is more suitable to deal with the continuous labels and the knowledge-enhanced module makes the model better learn the prior knowledge. In comparison to the representative mathematical methods, the Ep2NgmGAN has much higher efficiency and better or comparable accuracy, making it an appealing tool for NF ground motion synthesis.","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"93 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compstruc.2025.107740","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Near-fault (NF) ground motions usually have high-amplitude and long-period velocity pulses that might cause excessive responses in flexible structures. However, the number of recorded NF ground motions is very limited and hinders related research in earthquake engineering. In this paper, we develop a conditional generative adversarial network (CGAN) model, namely Ep2NgmGAN, to generate NF ground motions under given engineering parameters. Different from the traditional CGAN model, it inputs the label by introducing a label embedding module. In addition, a knowledge-enhanced module is adopted to enable the model to capture prior knowledge about NF ground motions. Using the strategy suggested in this study, the Ep2NgmGAN is trained and tested on the dataset constructed using the recorded NF ground motions and generated ones based on a mathematical method. Finally, numerical experiments and comparative investigations are carried out to comprehensively evaluate the performance of Ep2NgmGAN. The results indicate that the label embedding module is more suitable to deal with the continuous labels and the knowledge-enhanced module makes the model better learn the prior knowledge. In comparison to the representative mathematical methods, the Ep2NgmGAN has much higher efficiency and better or comparable accuracy, making it an appealing tool for NF ground motion synthesis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信