Control Engineering Practice最新文献

筛选
英文 中文
Synchronization and tracking control of 4WISBW system considering the differences in the characteristics of corner modules 考虑角模块特性差异的 4WISBW 系统的同步和跟踪控制
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-09-04 DOI: 10.1016/j.conengprac.2024.106043
Heng Huang, Wanzhong Zhao, Chunyan Wang
{"title":"Synchronization and tracking control of 4WISBW system considering the differences in the characteristics of corner modules","authors":"Heng Huang,&nbsp;Wanzhong Zhao,&nbsp;Chunyan Wang","doi":"10.1016/j.conengprac.2024.106043","DOIUrl":"10.1016/j.conengprac.2024.106043","url":null,"abstract":"<div><p>To enhance vehicle stability and safety, the four-wheel independent steer-by-wire (4WISBW) system has garnered significant attention. However, the characteristics of corner modules, including model parameters uncertainty and disturbance torque, directly contribute to the deterioration of dynamic response in tracking control. And the differences in the characteristics leading to reduced synchronization performance in the 4WISBW system and hindering effective coordination. To enhance the synchronization and tracking control performance of the 4WISBW system, a novel control strategy, coupled with the fictitious master-generalized mean deviation coupling structure (FMGMDCS), is proposed. Firstly, the corner module dynamic model and the vehicle dynamic model are established. Subsequently, the impact of the differences in the characteristics on the system's tracking and synchronization control is analyzed. Next, the FMGMDCS and the angle synchronization controller based on a new reaching law sliding mode control (NRLSMC) are proposed to compensate for synchronization errors in the 4WISBW system caused by the differences in the characteristics of corner modules. Finally, a radial basis function neural network fast terminal sliding mode control (RBF-FTSMC) steering angle tracking controller is designed to enhance the tracking performance of corner modules. Simulation and experimental results indicate that the proposed control strategy can effectively solve the synchronization problem of the 4WISBW system and improve the system's tracking performance.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106043"},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observer-based adaptive robust control of aircraft antiskid brakes with disturbance compensation 基于观测器的飞机防滑制动器自适应鲁棒控制与干扰补偿
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-09-04 DOI: 10.1016/j.conengprac.2024.106079
Zhuangzhuang Wang , Ning Bai , Xiaochao Liu , Pengyuan Qi
{"title":"Observer-based adaptive robust control of aircraft antiskid brakes with disturbance compensation","authors":"Zhuangzhuang Wang ,&nbsp;Ning Bai ,&nbsp;Xiaochao Liu ,&nbsp;Pengyuan Qi","doi":"10.1016/j.conengprac.2024.106079","DOIUrl":"10.1016/j.conengprac.2024.106079","url":null,"abstract":"<div><p>The efficient antiskid braking control of aircraft is achieved by accurately tracking the optimal slip ratio. However, aircraft antiskid braking systems are subject to many parametric uncertainties and uncertain disturbances, and the limited sensor signals make it more difficult to design a high-performance antiskid braking system controller. To address this issue, an observer-based adaptive robust aircraft antiskid braking system controller with disturbance compensation is proposed to enhance the tracking performance and disturbance rejection of aircraft antiskid braking system. The proposed controller effectively integrates parameter identification, adaptive control, and extended state observer using the backstepping method. Parametric uncertainties and fast time-varying brake torque conversion coefficient are handled by adaptive law and least squares parameter identification method, respectively. After that, the remaining parametric uncertainties, parameter identification errors, and uncertain disturbances are observed integrally by constructing extended state observer and compensated in a feedforward way. Another feature of the designed controller is that the dynamics of the hydraulic system are considered, and the disturbances of the hydraulic system are also observed and compensated with extended state observer, thus further improving tracking accuracy. Since the burden of extended state observer is greatly reduced by adaptive law and parameter identification, the proposed controller can effectively avoid high-gain feedback while theoretically guaranteeing that the tracking error is bounded in the presence of time-variant uncertainties. The effectiveness of the proposed controller is proved by several sets of simulation tests and brake testing platform experiments.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106079"},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Indoor formation motion planning using B-splines parametrization and evolutionary optimization 利用 B 样条参数化和进化优化进行室内编队运动规划
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-09-04 DOI: 10.1016/j.conengprac.2024.106066
Vincent Marguet , Cong Khanh Dinh , Florin Stoican , Ionela Prodan
{"title":"Indoor formation motion planning using B-splines parametrization and evolutionary optimization","authors":"Vincent Marguet ,&nbsp;Cong Khanh Dinh ,&nbsp;Florin Stoican ,&nbsp;Ionela Prodan","doi":"10.1016/j.conengprac.2024.106066","DOIUrl":"10.1016/j.conengprac.2024.106066","url":null,"abstract":"<div><p>Formation generation with connectivity maintenance under efficiency restrictions for a group of autonomous vehicles is a challenging problem. By planning trajectories offline, the vehicles can follow optimized paths, resulting in improved efficiency in terms of time, energy, and resource utilization. This paper introduces a coherent approach that leverages evolutionary computing, notably a differential evolutionary algorithm, along with B-spline parametrizations, to effectively coordinate multiple indoor nanodrones. Off-line trajectories for both the leader and followers are designed to enforce multiple constraints (i.e., position, velocity, angles, thrust, angular velocity, waypoint passing, obstacle avoidance). The proposed approach accommodates intricate maneuvers such as formation switching and obstacle avoidance, facilitated by a knot refinement procedure that minimizes conservatism in constraint enforcement. The theoretical results are validated in both simulation and experiments.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106066"},"PeriodicalIF":5.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative study of adaptive trajectory tracking controller for four-wheel mobile robot with prescribed-prediction performance 具有规定预测性能的四轮移动机器人自适应轨迹跟踪控制器比较研究
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-09-03 DOI: 10.1016/j.conengprac.2024.106076
Lei Liu , Hui Pang , Sitian Yang , Ruxuan Zuo , Zhaonian He , Minhao Liu
{"title":"Comparative study of adaptive trajectory tracking controller for four-wheel mobile robot with prescribed-prediction performance","authors":"Lei Liu ,&nbsp;Hui Pang ,&nbsp;Sitian Yang ,&nbsp;Ruxuan Zuo ,&nbsp;Zhaonian He ,&nbsp;Minhao Liu","doi":"10.1016/j.conengprac.2024.106076","DOIUrl":"10.1016/j.conengprac.2024.106076","url":null,"abstract":"<div><p>The nonlinear external disturbances and unmodeled dynamics characteristics have crucial impacts on trajectory tracking control accuracy of a four-wheel mobile robot (FWMR) under complicated working conditions. In this work, an adaptive trajectory tracking controller is designed for the FWMR to achieve the prescribed-prediction performance. On the basis of establishing the FWMR’s dynamics equations, an enhanced prescribed performance function (EPPF) is constructed to restrain the tracking errors of the FWMR within a certain range without requiring the exact initial conditions, thus guaranteeing the transient performance of the control system. Then, an optimal-predictive control (OPC) approach is presented to fulfill the asymptotic stability of the tracking errors of the FWMR. Specifically, the radial basis function neural network (RBFNN) incorporating a minimum parameter learning approach that are implanted into the expected controller is designed to attenuate the nonlinear external disturbances and the unmodeled dynamics of the FWMR. Lastly, comparative simulation investigations are carried out to illustrate the superiority of the proposed EPPF-OPC controller, and moreover, the comparative experiments are further performed to validate the practical effectiveness of the EPPF-OPC controller based on a self-established robot operating system (ROS) test platform of the FWMR.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106076"},"PeriodicalIF":5.4,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142128897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency response analysis for reset control systems: Application to predict precision of motion systems 复位控制系统的频率响应分析:应用于运动系统精度预测
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-09-02 DOI: 10.1016/j.conengprac.2024.106063
Xinxin Zhang, Marcin B. Kaczmarek, S. Hassan HosseinNia
{"title":"Frequency response analysis for reset control systems: Application to predict precision of motion systems","authors":"Xinxin Zhang,&nbsp;Marcin B. Kaczmarek,&nbsp;S. Hassan HosseinNia","doi":"10.1016/j.conengprac.2024.106063","DOIUrl":"10.1016/j.conengprac.2024.106063","url":null,"abstract":"<div><p>The frequency response analysis describes the steady-state responses of a system to sinusoidal inputs at different frequencies, providing control engineers with an effective tool for designing control systems in the frequency domain. However, conducting this analysis for closed-loop reset systems is challenging due to system nonlinearity. This paper addresses this challenge through two key contributions. First, it introduces novel analysis methods for both open-loop and closed-loop reset control systems at steady states. These methods decompose the frequency responses of reset systems into base-linear and nonlinear components. Second, building upon this analysis, the paper develops closed-loop higher-order sinusoidal-input describing functions for reset control systems at steady states. These functions facilitate the analysis of frequency-domain properties, establish a connection between open-loop and closed-loop analysis. The accuracy and effectiveness of the proposed methods are successfully validated through simulations and experiments conducted on a reset Proportional–Integral–Derivative (PID) controlled precision motion system.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106063"},"PeriodicalIF":5.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0967066124002223/pdfft?md5=e343c15b7ef0dc4a81ada9bf1cc12dcb&pid=1-s2.0-S0967066124002223-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Active control of road vehicle’s drag for varying upstream flow conditions using a recursive subspace based predictive control methodology 利用基于递归子空间的预测控制方法,在上游水流条件变化时主动控制道路车辆的阻力
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-08-31 DOI: 10.1016/j.conengprac.2024.106071
Agostino Cembalo , Patrick Coirault , Jacques Borée , Clément Dumand , Guillaume Mercère
{"title":"Active control of road vehicle’s drag for varying upstream flow conditions using a recursive subspace based predictive control methodology","authors":"Agostino Cembalo ,&nbsp;Patrick Coirault ,&nbsp;Jacques Borée ,&nbsp;Clément Dumand ,&nbsp;Guillaume Mercère","doi":"10.1016/j.conengprac.2024.106071","DOIUrl":"10.1016/j.conengprac.2024.106071","url":null,"abstract":"<div><p>The growing focus on reducing energy consumption, particularly in electric vehicles with limited autonomy, has prompted innovative solutions. In this context, we propose a real-time flap-based control system aimed at improving aerodynamic drag in real driving conditions. Employing a Recursive Subspace based Predictive Control approach, we conducted wind tunnel tests on a representative model vehicle at reduced scale equipped with flaps. Comprehensive assessments using pressure measurements and Particle Image Velocimetry were undertaken to evaluate the control efficiency. Static and dynamic perturbation tests were conducted, revealing the system’s effectiveness in both scenarios. The closed-loop controlled system demonstrated a substantial gain, achieving a 5% base pressure recovery.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106071"},"PeriodicalIF":5.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0967066124002302/pdfft?md5=002d356a29e08d75e4b62b3e1ae0a188&pid=1-s2.0-S0967066124002302-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A model-based kinematic guidance method for control of underactuated autonomous underwater vehicles 基于模型的运动学制导方法,用于控制欠驱动自主潜水器
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-08-31 DOI: 10.1016/j.conengprac.2024.106068
Loïck Degorre , Thor I. Fossen , Olivier Chocron , Emmanuel Delaleau
{"title":"A model-based kinematic guidance method for control of underactuated autonomous underwater vehicles","authors":"Loïck Degorre ,&nbsp;Thor I. Fossen ,&nbsp;Olivier Chocron ,&nbsp;Emmanuel Delaleau","doi":"10.1016/j.conengprac.2024.106068","DOIUrl":"10.1016/j.conengprac.2024.106068","url":null,"abstract":"<div><p>In this work, a novel guidance principle for underactuated autonomous underwater vehicles is introduced. This new method relies on the kinematic coupling between non-actuated and actuated degrees of freedom. It uses a newly introduced matrix called the <em>Handy Matrix</em> denoted <span><math><mi>H</mi></math></span>. The method allows reassigning unused degrees of freedom of the task to useful non-actuated DOF. The algorithm and design rules leading to the construction of <span><math><mi>H</mi></math></span> are also provided. Two different solutions based on matrix <span><math><mi>H</mi></math></span> are compared on a standard seabed scanning task.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106068"},"PeriodicalIF":5.4,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theory and experiment on distributed output formation tracking of unmanned aerial and ground vehicle swarm systems over jointly connected digraphs 联合连接数字图上无人机和地面飞行器蜂群系统的分布式输出编队跟踪理论与实验
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-08-29 DOI: 10.1016/j.conengprac.2024.106070
Peixuan Shu , Changhai Wang , Yongzhao Hua , Xiwang Dong , Yumeng Liu , Zhang Ren
{"title":"Theory and experiment on distributed output formation tracking of unmanned aerial and ground vehicle swarm systems over jointly connected digraphs","authors":"Peixuan Shu ,&nbsp;Changhai Wang ,&nbsp;Yongzhao Hua ,&nbsp;Xiwang Dong ,&nbsp;Yumeng Liu ,&nbsp;Zhang Ren","doi":"10.1016/j.conengprac.2024.106070","DOIUrl":"10.1016/j.conengprac.2024.106070","url":null,"abstract":"<div><p>This paper studies the distributed output formation tracking control problem of the unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) swarm systems, where the UAV swarm cooperatively tracks the output trajectory of the UGV in a formation under directed jointly connected communication networks. A three-layer formation tracking protocol is proposed. Firstly, a novel distributed observer using neighbor interactions is designed for each UAV to estimate the states of the UGV with parameterized inputs over periodic jointly connected digraphs. Next, based on the observation result and output regulation theory, a virtual reference system that tracks the trajectory of the UGV in the desired formation is constructed to generate reference states for each UAV. Then based on the differential flatness of UAVs, a geometric controller is utilized for UAVs to track the reference states and form the formation. An algorithm to determine the gain matrices of the protocol is also presented while the convergence of the system is analyzed. Finally, an experiment platform with three quadrotor UAVs and one UGV is built. The effectiveness of the proposed protocol is validated both by the simulation and experiment.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106070"},"PeriodicalIF":5.4,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142097736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A hierarchical multi-parametric programming approach for dynamic risk-based model predictive quality control 基于风险的动态模型预测质量控制的分层多参数编程方法
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-08-28 DOI: 10.1016/j.conengprac.2024.106062
Austin Braniff, Yuhe Tian
{"title":"A hierarchical multi-parametric programming approach for dynamic risk-based model predictive quality control","authors":"Austin Braniff,&nbsp;Yuhe Tian","doi":"10.1016/j.conengprac.2024.106062","DOIUrl":"10.1016/j.conengprac.2024.106062","url":null,"abstract":"<div><p>In this work, we present a hierarchical batch quality control strategy with real-time process safety management. It features a multi-time-scale decision-making framework augmenting: (i) Risk-aware model predictive controller for short-term set point tracking and dynamic risk control under disturbances; (ii) Control-aware optimizer for long-term quality and safety optimization over the entire batch operation; (iii) Intermediate surrogate model to bridge the timescale gap by readjusting the optimizer operating decisions for the controller. All of the above problems are solved via multi-parametric mixed-integer quadratic programming with a key advantage to generate offline explicit control/optimization laws as affine functions of process and risk variables. This allows for the design of a fit-for-purpose risk management plan prior to real-time implementation, while reducing the need for repetitive online dynamic optimization. A unified process model is used to underpin the consistency of hierarchical operational optimization. The proposed approach offers a flexible strategy to integrate distinct decision-making time scales which can be selected separately tailored to the process-specific need of control, fault prognosis, and end-batch quality control. A T2 batch reactor case study is presented to showcase this approach to systematically address the interactions and trade-offs of multiple decision layers toward improving process efficiency and safety.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106062"},"PeriodicalIF":5.4,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interval estimation of dynamic liquid level of sucker-rod pumping systems based on dynamometer card 基于测功卡的抽油杆泵送系统动态液位区间估算
IF 5.4 2区 计算机科学
Control Engineering Practice Pub Date : 2024-08-27 DOI: 10.1016/j.conengprac.2024.106064
Wenhua Liu, Jinghao Li, Guang-Hong Yang, Xianwen Gao
{"title":"Interval estimation of dynamic liquid level of sucker-rod pumping systems based on dynamometer card","authors":"Wenhua Liu,&nbsp;Jinghao Li,&nbsp;Guang-Hong Yang,&nbsp;Xianwen Gao","doi":"10.1016/j.conengprac.2024.106064","DOIUrl":"10.1016/j.conengprac.2024.106064","url":null,"abstract":"<div><p>This paper is concerned with the interval estimation problem of the dynamic liquid level for sucker-rod pumping systems via dynamometer cards. Firstly, a surface dynamometer card-based dynamic liquid level model is established in terms of the operational mechanism of the pump and the dynamics of the rod strings. Then, an underdamped oscillation method and a boxplot-based denoising method are developed respectively to determine the damping coefficient in the dynamics of the rod strings and deal with the uncertainties in the dynamometer card. Based on these, a finite difference-based interval estimation strategy is proposed to determine dynamic liquid level via the surface dynamometer card. Finally, simulation results with the field measurements demonstrate the validity of the proposed method.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"152 ","pages":"Article 106064"},"PeriodicalIF":5.4,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信