Mary A. Hopkins , Brian E. McGuire , David P. Finn
{"title":"Targeting the endocannabinoid system for the management of low back pain","authors":"Mary A. Hopkins , Brian E. McGuire , David P. Finn","doi":"10.1016/j.coph.2024.102438","DOIUrl":"https://doi.org/10.1016/j.coph.2024.102438","url":null,"abstract":"<div><p>Low back pain (LBP) is a major unmet clinical need. The endocannabinoid system (ECS) has emerged as a promising therapeutic target for pain, including LBP. This review examines the evidence for the ECS as a therapeutic target for LBP. While preclinical studies demonstrate the potential of the ECS as a viable therapeutic target, clinical trials have presented conflicting findings. This review underscores the need for innovative LBP treatments and biomarkers and proposes the ECS as a promising avenue for their exploration. A deeper mechanistic understanding of the ECS in LBP could inform the development of new pain management strategies.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"75 ","pages":"Article 102438"},"PeriodicalIF":4.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1471489224000080/pdfft?md5=07597a8c72a12dbf07bf7fe9f395c1f7&pid=1-s2.0-S1471489224000080-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936644","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrea Kinga Nehr-Majoros , Ágnes Király , Zsuzsanna Helyes , Éva Szőke
{"title":"Lipid raft disruption as an opportunity for peripheral analgesia","authors":"Andrea Kinga Nehr-Majoros , Ágnes Király , Zsuzsanna Helyes , Éva Szőke","doi":"10.1016/j.coph.2024.102432","DOIUrl":"10.1016/j.coph.2024.102432","url":null,"abstract":"<div><p><span><span><span>Chronic pain conditions are unmet medical needs, since the available drugs, opioids, non-steroidal anti-inflammatory/analgesic drugs and adjuvant analgesics do not provide satisfactory therapeutic effect in a great proportion of patients. Therefore, there is an urgent need to find novel targets and novel therapeutic approaches that differ from classical pharmacological receptor antagonism. Most ion channels and receptors involved in pain sensation and processing such as Transient Receptor Potential<span> ion channels, opioid receptors, P2X purinoreceptors and </span></span>neurokinin 1 receptor are located in the </span>lipid raft regions of the plasma membrane. Targeting the </span>membrane lipid<span> composition and structure by sphingolipid or cholesterol depletion might open future perspectives for the therapy of chronic inflammatory, neuropathic or cancer pain, most importantly acting at the periphery.</span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"75 ","pages":"Article 102432"},"PeriodicalIF":4.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139643267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial overview: New and revitalized old targets in metabolic disease","authors":"Jacob B. Hansen, Ivana Novak","doi":"10.1016/j.coph.2024.102434","DOIUrl":"10.1016/j.coph.2024.102434","url":null,"abstract":"","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"75 ","pages":"Article 102434"},"PeriodicalIF":4.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Esther Roucaute , Marcela Huertas-Bello , Alfonso L. Sabater
{"title":"Novel treatments for dry eye syndrome","authors":"Esther Roucaute , Marcela Huertas-Bello , Alfonso L. Sabater","doi":"10.1016/j.coph.2024.102431","DOIUrl":"10.1016/j.coph.2024.102431","url":null,"abstract":"<div><p>Dry eye syndrome (DES) is a prevalent and multifactorial disease that leads to a self-perpetuating cycle of inflammation and damage to the ocular surface. This results in symptoms such as redness, burning, and blurred vision, which can negatively affect a patient's quality of life. While treatments are available to manage DES, they only temporarily relieve symptoms. Furthermore, long-term use of certain medications can cause harm to the ocular surface. Therefore, there is a need for safer and effective treatments for DES. This review highlights the latest advancements in DES therapy, providing valuable insights into ongoing efforts to improve patient outcomes.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"75 ","pages":"Article 102431"},"PeriodicalIF":4.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139567295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analgesic potential of voltage gated sodium channel modulators for the management of pain","authors":"Jason J. McDougall, Melissa S. O'Brien","doi":"10.1016/j.coph.2024.102433","DOIUrl":"10.1016/j.coph.2024.102433","url":null,"abstract":"<div><p>Neuronal electrochemical signals involve the flux of sodium ions through voltage-gated sodium channels (Na<sub>V</sub>) located in the neurolemma. Of the nine sodium channel subtypes, Na<sub>V</sub>-1.7, 1.8, and 1.9 are predominantly located on nociceptors, making them prime targets to control pain. This review highlights some of the latest discoveries targeting Na<sub>V</sub> channel activity, including: (1) charged local anaesthetic derivatives; (2) Na<sub>V</sub> channel toxins and associated small peptide blockers; (3) regulation of Na<sub>V</sub> channel accessory proteins; and (4) genetic manipulation of Na<sub>V</sub> channel function. While the translation of preclinical findings to a viable treatment in humans has remained a challenge, a greater understanding of Na<sub>V</sub> channel physiology could lead to the development of a new stream of therapies aimed at alleviating chronic pain.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"75 ","pages":"Article 102433"},"PeriodicalIF":4.0,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1471489224000031/pdfft?md5=c9504924cde4ad710a2f60d171f937bb&pid=1-s2.0-S1471489224000031-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139554837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hua Ye , Huantao Hu , Xiaoliang Zhou , Maolong Dong , Jun Ren
{"title":"Targeting ferroptosis in the maintenance of mitochondrial homeostasis in the realm of septic cardiomyopathy","authors":"Hua Ye , Huantao Hu , Xiaoliang Zhou , Maolong Dong , Jun Ren","doi":"10.1016/j.coph.2023.102430","DOIUrl":"https://doi.org/10.1016/j.coph.2023.102430","url":null,"abstract":"<div><p><span>Septic cardiomyopathy is one of the predominant culprit factors contributing to the rising mortality in patients with severe </span>sepsis<span><span><span>. Among various mechanisms responsible for the etiology of septic heart anomalies<span>, disruption of mitochondrial homeostasis has gained much recent attention, resulting in myocardial inflammation and even cell death. </span></span>Ferroptosis is a novel category of regulated cell death (RCD) provoked by iron-dependent </span>phospholipid peroxidation through iron-mediated phospholipid (PL) peroxidation, enroute to the rupture of plasma membranes and eventually cell death. This review summarizes the recent progress of ferroptosis in mitochondrial homeostasis during septic cardiomyopathy. We will emphasize the role of mitochondrial iron transport channels and the antioxidant system in ferroptosis. Finally, we will summarize and discuss future research, which should help guide disease treatment.</span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"74 ","pages":"Article 102430"},"PeriodicalIF":4.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João P.L. Velloso , Aaron S. Kovacs , Douglas E.V. Pires , David B. Ascher
{"title":"AI-driven GPCR analysis, engineering, and targeting","authors":"João P.L. Velloso , Aaron S. Kovacs , Douglas E.V. Pires , David B. Ascher","doi":"10.1016/j.coph.2023.102427","DOIUrl":"https://doi.org/10.1016/j.coph.2023.102427","url":null,"abstract":"<div><p>This article investigates the role of recent advances in Artificial Intelligence (AI) to revolutionise the study of G protein-coupled receptors (GPCRs). AI has been applied to many areas of GPCR research, including the application of machine learning (ML) in GPCR classification, prediction of GPCR activation levels, modelling GPCR 3D structures and interactions, understanding G-protein selectivity, aiding elucidation of GPCRs structures, and drug design. Despite progress, challenges in predicting GPCR structures and addressing the complex nature of GPCRs remain, providing avenues for future research and development.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"74 ","pages":"Article 102427"},"PeriodicalIF":4.0,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}