Developmental Neuroscience最新文献

筛选
英文 中文
Prenatal Stress Induces Translational Disruption Associated with Myelination Deficits. 产前应激诱导与髓鞘形成缺陷相关的翻译中断。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-03-31 DOI: 10.1159/000530282
Gabrielle K Crombie, Hannah K Palliser, Julia C Shaw, Bethany A Hanley, Roisin A Moloney, Jonathan J Hirst
{"title":"Prenatal Stress Induces Translational Disruption Associated with Myelination Deficits.","authors":"Gabrielle K Crombie,&nbsp;Hannah K Palliser,&nbsp;Julia C Shaw,&nbsp;Bethany A Hanley,&nbsp;Roisin A Moloney,&nbsp;Jonathan J Hirst","doi":"10.1159/000530282","DOIUrl":"10.1159/000530282","url":null,"abstract":"<p><p>Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"290-308"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9227779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dendrimer-Conjugated Glutamate Carboxypeptidase II Inhibitor Restores Microglial Changes in a Rabbit Model of Cerebral Palsy. 树突结合谷氨酸羧肽酶II抑制剂恢复兔脑瘫模型中的微胶质细胞变化。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-03-29 DOI: 10.1159/000530389
Nirnath Sah, Zhi Zhang, Alicia Chime, Amanda Fowler, Antonio Mendez-Trendler, Anjali Sharma, Rangaramanujam M Kannan, Barbara Slusher, Sujatha Kannan
{"title":"Dendrimer-Conjugated Glutamate Carboxypeptidase II Inhibitor Restores Microglial Changes in a Rabbit Model of Cerebral Palsy.","authors":"Nirnath Sah, Zhi Zhang, Alicia Chime, Amanda Fowler, Antonio Mendez-Trendler, Anjali Sharma, Rangaramanujam M Kannan, Barbara Slusher, Sujatha Kannan","doi":"10.1159/000530389","DOIUrl":"10.1159/000530389","url":null,"abstract":"<p><p>We have previously shown that maternal endotoxin exposure leads to a phenotype of cerebral palsy and pro-inflammatory microglia in the brain in neonatal rabbits. \"Activated\" microglia overexpress the enzyme glutamate carboxypeptidase II (GCPII) that hydrolyzes N-acetylaspartylglutamate to N-acetylaspartate and glutamate, and we have shown previously that inhibiting microglial GCPII is neuroprotective. Glutamate-induced injury and associated immune signaling can alter microglial responses including microglial process movements for surveillance and phagocytosis. We hypothesize that inhibition of GCPII activity could alter microglial phenotype and normalize microglial process movement/dynamics. Newborn rabbit kits exposed to endotoxin in utero, when treated with dendrimer-conjugated 2-(phosphonomethyl)-pentanedioic acid (D-2PMPA), a potent and selective inhibitor of microglial GCPII, showed profound changes in microglial phenotype within 48 h of treatment. Live imaging of hippocampal microglia in ex vivo brain slice preparations revealed larger cell body and phagocytic cup sizes with less stable microglia processes in CP kits compared to healthy controls. D-2PMPA treatment led to significant reversal of microglial process stability to healthy control levels. Our results emphasize the importance of microglial process dynamics in determining the state of microglial function in the developing brain and demonstrate how GCPII inhibition specifically in microglia can effectively change the microglial process motility to healthy control levels, potentially impacting migration, phagocytosis, and inflammatory functions.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"268-275"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9573180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology. 形态计量分析中心提出的人类结构-大脑连接矩阵哈佛-牛津图谱框架:用一种新的神经解剖学类型学提高人类结构连接精度的历史视角和未来方向。
IF 2.3 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-03-28 DOI: 10.1159/000530358
Nikos Makris, Richard Rushmore, Jonathan Kaiser, Matthew Albaugh, Marek Kubicki, Yogesh Rathi, Fan Zhang, Lauren J O'Donnell, Edward Yeterian, Verne S Caviness, David N Kennedy
{"title":"A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology.","authors":"Nikos Makris, Richard Rushmore, Jonathan Kaiser, Matthew Albaugh, Marek Kubicki, Yogesh Rathi, Fan Zhang, Lauren J O'Donnell, Edward Yeterian, Verne S Caviness, David N Kennedy","doi":"10.1159/000530358","DOIUrl":"10.1159/000530358","url":null,"abstract":"&lt;p&gt;&lt;p&gt;A complete structural definition of the human nervous system must include delineation of its wiring diagram (e.g., Swanson LW. Brain architecture: understanding the basic plan, 2012). The complete formulation of the human brain circuit diagram (BCD [Front Neuroanat. 2020;14:18]) has been hampered by an inability to determine connections in their entirety (i.e., not only pathway stems but also origins and terminations). From a structural point of view, a neuroanatomic formulation of the BCD should include the origins and terminations of each fiber tract as well as the topographic course of the fiber tract in three dimensions. Classic neuroanatomical studies have provided trajectory information for pathway stems and their speculative origins and terminations [Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux, 1901; Dejerine J and Dejerine-Klumpke A. Anatomie des Centres Nerveux: Méthodes générales d'étude-embryologie-histogénèse et histologie. Anatomie du cerveau, 1895; Ludwig E and Klingler J. Atlas cerebri humani, 1956; Makris N. Delineation of human association fiber pathways using histologic and magnetic resonance methodologies; 1999; Neuroimage. 1999 Jan;9(1):18-45]. We have summarized these studies previously [Neuroimage. 1999 Jan;9(1):18-45] and present them here in a macroscale-level human cerebral structural connectivity matrix. A matrix in the present context is an organizational construct that embodies anatomical knowledge about cortical areas and their connections. This is represented in relation to parcellation units according to the Harvard-Oxford Atlas neuroanatomical framework established by the Center for Morphometric Analysis at Massachusetts General Hospital in the early 2000s, which is based on the MRI volumetrics paradigm of Dr. Verne Caviness and colleagues [Brain Dev. 1999 Jul;21(5):289-95]. This is a classic connectional matrix based mainly on data predating the advent of DTI tractography, which we refer to as the \"pre-DTI era\" human structural connectivity matrix. In addition, we present representative examples that incorporate validated structural connectivity information from nonhuman primates and more recent information on human structural connectivity emerging from DTI tractography studies. We refer to this as the \"DTI era\" human structural connectivity matrix. This newer matrix represents a work in progress and is necessarily incomplete due to the lack of validated human connectivity findings on origins and terminations as well as pathway stems. Importantly, we use a neuroanatomical typology to characterize different types of connections in the human brain, which is critical for organizing the matrices and the prospective database. Although substantial in detail, the present matrices may be assumed to be only partially complete because the sources of data relating to human fiber system organization are limited largely to inferences from gross dissections of anatomic specimens or extrapolations of pa","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 4","pages":"161-180"},"PeriodicalIF":2.3,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526721/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10313222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglial Characterization in Transient Human Neurodevelopmental Structures. 瞬时人类神经发育结构中的小胶质细胞特征。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-01-05 DOI: 10.1159/000528911
David A Menassa, Janja Kopić, Alisa Junaković, Ivica Kostović, Željka Krsnik
{"title":"Microglial Characterization in Transient Human Neurodevelopmental Structures.","authors":"David A Menassa, Janja Kopić, Alisa Junaković, Ivica Kostović, Željka Krsnik","doi":"10.1159/000528911","DOIUrl":"10.1159/000528911","url":null,"abstract":"<p><p>Human neurodevelopment is characterized by the appearance, development, and disappearance or transformation of various transient structures that underlie the establishment of connectivity within and between future cortical and subcortical areas. Examples of transient structures in the forebrain (among many others) include the subpial granular layer and the subplate zone. We have previously characterized the precise spatiotemporal dynamics of microglia in the human telencephalon. Here, we describe the diversity of microglial morphologies in the subpial granular layer and the subplate zone. Where possible, we couple the predominant morphological phenotype with functional characterizations to infer tentative roles for microglia in a changing neurodevelopmental landscape. We interpret these findings within the context of relevant morphogenetic and neurogenetic events in humans. Due to the unique genetic, molecular, and anatomical features of the human brain and because many human neurological and psychiatric diseases have their origins during development, these structures deserve special attention.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"1-7"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9672363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurochemical Profile of BRAFV600E/AktT308D/S473D Mouse Gangliogliomas Reveals Impaired GABAergic System Inhibition. BRAFV600E/AktT308D/S473D小鼠神经节胶质瘤的神经化学特征揭示gaba能系统抑制受损。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 DOI: 10.1159/000528587
Maria Kyriazi, Philipp Müller, Julika Pitsch, Karen M J van Loo, Anne Quatraccioni, Thoralf Opitz, Susanne Schoch, Albert J Becker, Silvia Cases-Cunillera
{"title":"Neurochemical Profile of BRAFV600E/AktT308D/S473D Mouse Gangliogliomas Reveals Impaired GABAergic System Inhibition.","authors":"Maria Kyriazi,&nbsp;Philipp Müller,&nbsp;Julika Pitsch,&nbsp;Karen M J van Loo,&nbsp;Anne Quatraccioni,&nbsp;Thoralf Opitz,&nbsp;Susanne Schoch,&nbsp;Albert J Becker,&nbsp;Silvia Cases-Cunillera","doi":"10.1159/000528587","DOIUrl":"https://doi.org/10.1159/000528587","url":null,"abstract":"<p><p>Gangliogliomas (GGs), composed of dysmorphic neurons and neoplastic astroglia, represent the most frequent tumor entity associated with chronic recurrent epileptic seizures. So far, a systematic analysis of potential differences in neurochemical profiles of dysmorphic tumoral neurons as well as neurons of the peritumoral microenvironment (PTME) was hampered by the inability to unequivocally differentiate between the distinct neuronal components in human GG biopsies. Here, we have applied a novel GG mouse model that allows to clearly resolve the neurochemical profiles of GG-intrinsic versus PTME neurons. For this purpose, glioneuronal tumors in mice were induced by intraventricular in utero electroporation (IUE) of piggyBac-based plasmids for BRAFV600E and activated Akt (AktT308D/S473D, further referred to as AktDD) and analyzed neurochemically by immunocytochemistry against specific marker proteins. IUE of BRAFV600E/AktDD in mice resulted in tumors with the morphological features of human GGs. Our immunocytochemical analysis revealed a strong reduction of GABAARα1 immunoreactivity in the tumor compared to the PTME. In contrast, the extent of NMDAR1 immunoreactivity in the tumor appeared comparable to the PTME. Interestingly, tumor cells maintained the potential to express both receptors. Fittingly, the abundance of the presynaptic vesicular neurotransmitter transporters VGLUT1 and VGAT was also decreased in the tumor. Additionally, the fraction of parvalbumin and somatostatin nonneoplastic interneurons was reduced. In conclusion, changes in the levels of key proteins in neurotransmitter signaling suggest a loss of synapses and may thereby lead to neuronal network alterations in mouse GGs.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 2","pages":"53-65"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10030860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In utero Exposure to Valproic Acid throughout Pregnancy Causes Phenotypes of Autism in Offspring Mice. 妊娠期子宫内暴露于丙戊酸可导致后代小鼠出现自闭症表型。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-04-12 DOI: 10.1159/000530452
Takayuki Mitsuhashi, Satoko Hattori, Kimino Fujimura, Shinsuke Shibata, Tsuyoshi Miyakawa, Takao Takahashi
{"title":"In utero Exposure to Valproic Acid throughout Pregnancy Causes Phenotypes of Autism in Offspring Mice.","authors":"Takayuki Mitsuhashi,&nbsp;Satoko Hattori,&nbsp;Kimino Fujimura,&nbsp;Shinsuke Shibata,&nbsp;Tsuyoshi Miyakawa,&nbsp;Takao Takahashi","doi":"10.1159/000530452","DOIUrl":"10.1159/000530452","url":null,"abstract":"<p><p>Valproic acid (VPA) is an antiepileptic drug that inhibits the epileptic activity of neurons mainly by inhibiting sodium channels and GABA transaminase. VPA is also known to inhibit histone deacetylases, which epigenetically modify the cell proliferation/differentiation characteristics of stem/progenitor cells within developing tissues. Recent clinical studies in humans have indicated that VPA exposure in utero increases the risk of autistic features and intellectual disabilities in offspring; we have previously reported that low-dose VPA exposure in utero throughout pregnancy increases the production of projection neurons from neuronal stem/progenitor cells that are distributed in the superficial neocortical layers of the fetal brain. In the present study, we found that in utero VPA-exposed mice exhibited abnormal social interaction, changes in cognitive function, hypersensitivity to pain/heat, and impaired locomotor activity, all of which are characteristic symptoms of autism spectrum disorder in humans. Taken together, our findings indicate that VPA exposure in utero throughout pregnancy alters higher brain function and predisposes individuals to phenotypes that resemble autism and intellectual disability. Furthermore, these symptoms are likely to be due to neocortical dysgenesis that was caused by an increased number of projection neurons in specific layers of the neocortex.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"223-233"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9290265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expression Analyses of Rich2/Arhgap44, a Rho Family GTPase-Activating Protein, during Mouse Brain Development. Rho家族gtpase激活蛋白Rich2/Arhgap44在小鼠脑发育过程中的表达分析
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 DOI: 10.1159/000529051
Naoki Goto, Masashi Nishikawa, Hidenori Ito, Mariko Noda, Nanako Hamada, Hidenori Tabata, Makoto Kinoshita, Koh-Ichi Nagata
{"title":"Expression Analyses of Rich2/Arhgap44, a Rho Family GTPase-Activating Protein, during Mouse Brain Development.","authors":"Naoki Goto,&nbsp;Masashi Nishikawa,&nbsp;Hidenori Ito,&nbsp;Mariko Noda,&nbsp;Nanako Hamada,&nbsp;Hidenori Tabata,&nbsp;Makoto Kinoshita,&nbsp;Koh-Ichi Nagata","doi":"10.1159/000529051","DOIUrl":"https://doi.org/10.1159/000529051","url":null,"abstract":"<p><p>Rho family small GTPases, such as Rho, Rac, and Cdc42, play essential roles during brain development, by regulating cellular signaling and actin cytoskeletal reorganization. Rich2/Arhgap44, a Rac- and Cdc42-specific GTPase-activating protein, has been reported to be a key regulator for dendritic spine morphology and synaptic function. Given the essential roles of Rac and Cdc42 in brain development, Rich2 is supposed to take part in brain development. However, not only the molecular mechanism involved but also the expression profile of Rich2 during neurodevelopment has not yet been elucidated. In this study, we carried out expression analyses of Rich2 by focusing on mouse brain development. In immunoblotting, Rich2 exhibited a tissue-dependent expression profile in the young adult mouse, and the expression was increased during brain development. In immunohistochemical analyses, Rich2 was observed in the cytoplasm of cortical neurons at postnatal day (P) 0 and then came to be enriched in the nucleus with moderate distribution in neuropils at P7. Later at P30, a complex immunostaining pattern of Rich2 was observed; Rich2 was distributed in the nucleus, cytoplasm, and neuropils in many cortical neurons, whereas other neurons frequently displayed little expression. In the hippocampus at P7, Rich2 was distributed mainly in the cytoplasm of excitatory neurons in the cornu ammonis regions, while it was moderately detected in the nucleus in the dentate granule cells. Notably, Rich2 was distributed in excitatory synapses of the cornu ammonis 1 region at P30. Biochemical fractionation analyses also detected Rich2 in the postsynaptic density. Taken together, Rich2 is found to be expressed in the central nervous system in a developmental stage-dependent manner and may be involved in synapse formation/maintenance in cortical neurons.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":"45 1","pages":"19-26"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10129027/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10048019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Evaluation of C4 Gene Copy Number in Pediatric Acute Neuropsychiatric Syndrome. 评估小儿急性神经精神综合征的 C4 基因拷贝数
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-06-28 DOI: 10.1159/000531707
Agnieszka Kalinowski, Lu Tian, Reenal Pattni, Hanna Ollila, Maroof Khan, Cindy Manko, Melissa Silverman, Meiqian Ma, Laurie Columbo, Bahare Farhadian, Susan Swedo, Tanya Murphy, Mats Johnson, Elisabeth Fernell, Christopher Gillberg, Margo Thienemann, Elizabeth D Mellins, Douglas F Levinson, Alexander E Urban, Jennifer Frankovich
{"title":"Evaluation of C4 Gene Copy Number in Pediatric Acute Neuropsychiatric Syndrome.","authors":"Agnieszka Kalinowski, Lu Tian, Reenal Pattni, Hanna Ollila, Maroof Khan, Cindy Manko, Melissa Silverman, Meiqian Ma, Laurie Columbo, Bahare Farhadian, Susan Swedo, Tanya Murphy, Mats Johnson, Elisabeth Fernell, Christopher Gillberg, Margo Thienemann, Elizabeth D Mellins, Douglas F Levinson, Alexander E Urban, Jennifer Frankovich","doi":"10.1159/000531707","DOIUrl":"10.1159/000531707","url":null,"abstract":"<p><p>Pediatric acute-onset neuropsychiatric syndrome (PANS) is an abrupt-onset neuropsychiatric disorder. PANS patients have an increased prevalence of comorbid autoimmune illness, most commonly arthritis. In addition, an estimated one-third of PANS patients present with low serum C4 protein, suggesting decreased production or increased consumption of C4 protein. To test the possibility that copy number (CN) variation contributes to risk of PANS illness, we compared mean total C4A and total C4B CN in ethnically matched subjects from PANS DNA samples and controls (192 cases and 182 controls). Longitudinal data from the Stanford PANS cohort (n = 121) were used to assess whether the time to juvenile idiopathic arthritis (JIA) or autoimmune disease (AI) onset was a function of total C4A or C4B CN. Lastly, we performed several hypothesis-generating analyses to explore the correlation between individual C4 gene variants, sex, specific genotypes, and age of PANS onset. Although the mean total C4A or C4B CN did not differ in PANS compared to controls, PANS patients with low C4B CN were at increased risk for subsequent JIA diagnosis (hazard ratio = 2.7, p value = 0.004). We also observed a possible increase in risk for AI in PANS patients and a possible correlation between lower C4B and PANS age of onset. An association between rheumatoid arthritis and low C4B CN has been reported previously. However, patients with PANS develop different types of JIA: enthesitis-related arthritis, spondyloarthritis, and psoriatic arthritis. This suggests that C4B plays a role that spans these arthritis types.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"315-324"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10070131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sexual Dimorphism in the Closure of the Hippocampal Postnatal Critical Period of Synaptic Plasticity after Intrauterine Growth Restriction: Link to Oligodendrocyte and Glial Dysregulation. 海马发育受限后突触可塑性关键期闭合过程中的两性异形:与少突胶质细胞和神经胶质调节障碍的联系。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-04-05 DOI: 10.1159/000530451
Michael Nugent, Mark St Pierre, Ashley Brown, Salma Nassar, Pritika Parmar, Yuma Kitase, Sarah Ann Duck, Charles Pinto, Lauren Jantzie, Camille Fung, Raul Chavez-Valdez
{"title":"Sexual Dimorphism in the Closure of the Hippocampal Postnatal Critical Period of Synaptic Plasticity after Intrauterine Growth Restriction: Link to Oligodendrocyte and Glial Dysregulation.","authors":"Michael Nugent,&nbsp;Mark St Pierre,&nbsp;Ashley Brown,&nbsp;Salma Nassar,&nbsp;Pritika Parmar,&nbsp;Yuma Kitase,&nbsp;Sarah Ann Duck,&nbsp;Charles Pinto,&nbsp;Lauren Jantzie,&nbsp;Camille Fung,&nbsp;Raul Chavez-Valdez","doi":"10.1159/000530451","DOIUrl":"10.1159/000530451","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of po","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"234-254"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9306757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System. 雪旺细胞的Hippo通路与周围神经系统的再生。
IF 2.9 4区 医学
Developmental Neuroscience Pub Date : 2023-01-01 Epub Date: 2023-04-20 DOI: 10.1159/000530621
Jingyuan Wang, Haofeng Chen, Wulei Hou, Qingjian Han, Zuoyun Wang
{"title":"Hippo Pathway in Schwann Cells and Regeneration of Peripheral Nervous System.","authors":"Jingyuan Wang,&nbsp;Haofeng Chen,&nbsp;Wulei Hou,&nbsp;Qingjian Han,&nbsp;Zuoyun Wang","doi":"10.1159/000530621","DOIUrl":"10.1159/000530621","url":null,"abstract":"<p><p>Hippo pathway is an evolutionarily conserved signaling pathway comprising a series of MST/LATS kinase complexes. Its key transcriptional coactivators YAP and TAZ regulate transcription factors such as TEAD family to direct gene expression. The regulation of Hippo pathway, especially the nuclear level change of YAP and TAZ, significantly influences the cell fate switching from proliferation to differentiation, regeneration, and postinjury repair. This review outlines the main findings of Hippo pathway in peripheral nerve development, regeneration, and tumorigenesis, especially the studies in Schwann cells. We also summarize other roles of Hippo pathway in damage repair of the peripheral nerve system and discuss the potential future research which probably contributes to novel therapeutic strategies.</p>","PeriodicalId":50585,"journal":{"name":"Developmental Neuroscience","volume":" ","pages":"276-289"},"PeriodicalIF":2.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9426315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信