DifferentiationPub Date : 2024-01-29DOI: 10.1016/j.diff.2024.100753
Virginia Papaioannou PhD
{"title":"The road to gene manipulation in the mouse: Jean Brachet Memorial Lecture of the International Society of Differentiation (delivered June 21, 2023 at Cold Spring Harbor Laboratory)","authors":"Virginia Papaioannou PhD","doi":"10.1016/j.diff.2024.100753","DOIUrl":"10.1016/j.diff.2024.100753","url":null,"abstract":"<div><p>Genetic manipulation in mammals has progressed rapidly in the past decade with the advent of CRISPR-Cas gene editing tools, promising profound impacts on the understanding of human development, health and disease. However, many years of research in divergent fields of experimental embryology, genetics, reproduction, molecular biology and transgenic technology laid the groundwork and have played critical roles for this progress. This article details various threads of research and the central role of the laboratory mouse that came together in reaching this point, all from the perspective of a scientist whose research was deeply immersed in the field.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139589058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2024-01-14DOI: 10.1016/j.diff.2024.100746
Yuanxiang Zhao , Zachary Skovgaard , Qinyi Wang
{"title":"Regulation of adipogenesis by histone methyltransferases","authors":"Yuanxiang Zhao , Zachary Skovgaard , Qinyi Wang","doi":"10.1016/j.diff.2024.100746","DOIUrl":"10.1016/j.diff.2024.100746","url":null,"abstract":"<div><p>Epigenetic regulation is a critical component of lineage determination. Adipogenesis is the process through which uncommitted stem cells or adipogenic precursor cells differentiate into adipocytes, the most abundant cell type of the adipose tissue. Studies examining chromatin modification during adipogenesis have provided further understanding of the molecular blueprint that controls the onset of adipogenic differentiation. Unlike histone acetylation, histone methylation has context dependent effects on the activity of a transcribed region of DNA, with individual or combined marks on different histone residues providing distinct signals for gene expression. Over half of the 42 histone methyltransferases identified in mammalian cells have been investigated in their role during adipogenesis, but across the large body of literature available, there is a lack of clarity over potential correlations or emerging patterns among the different players. In this review, we will summarize important findings from studies published in the past 15 years that have investigated the role of histone methyltransferases during adipogenesis, including both protein arginine methyltransferases (PRMTs) and lysine methyltransferases (KMTs). We further reveal that PRMT1/4/5, H3K4 KMTs (MLL1, MLL3, MLL4, SMYD2 and SET7/9) and H3K27 KMTs (EZH2) all play positive roles during adipogenesis, while PRMT6/7 and H3K9 KMTs (G9a, SUV39H1, SUV39H2, and SETDB1) play negative roles during adipogenesis.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468124000021/pdfft?md5=4d52ee29c3658350512006682d1fb712&pid=1-s2.0-S0301468124000021-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139469352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2024-01-01DOI: 10.1016/j.diff.2023.11.002
Laurence Baskin, Mei Cao, Sena Askel, Yi Li, Gerald Cunha
{"title":"Ovotesticular cords and ovotesticular follicles: New markers in a model of human mixed ovotestis","authors":"Laurence Baskin, Mei Cao, Sena Askel, Yi Li, Gerald Cunha","doi":"10.1016/j.diff.2023.11.002","DOIUrl":"10.1016/j.diff.2023.11.002","url":null,"abstract":"","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468123000786/pdfft?md5=b1eae3a9d5f4d791ad58e0a4d047f69f&pid=1-s2.0-S0301468123000786-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138435410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues","authors":"Avital Horwitz , Noa Levi-Carmel , Olga Shnaider , Ruth Birk","doi":"10.1016/j.diff.2024.100745","DOIUrl":"10.1016/j.diff.2024.100745","url":null,"abstract":"<div><p>Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that <em>BBS</em> genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown.</p><p>We investigated <em>BBS</em> genes involvement in the proliferation and early differentiation of different BBS cell types.</p><p>The involvement of <em>BBS</em><span> genes in cellular proliferation were studied in seven </span><em>in-vitro</em><span><span> and transgenic cell models; </span>keratinocytes (</span><em>hHaCaT</em>) and Ras-transfected keratinocytes (<em>Ras-hHaCaT</em>), neuronal cell lines (<em>hSH-SY5Y</em> and <em>rPC-12</em>), silenced <span><em>BBS4</em></span> neural cell lines (s<em>iBbs4 hSH-SY5Y</em> and <em>siBbs4 rPC-12</em>), adipocytes (<em>m3T3L1</em>), and <em>ex-vivo</em> transformed B-cells obtain from <em>BBS4</em> patients, using molecular and biochemical methodologies.</p><p><em>RashHaCaT</em> cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of <span><em>BBS1</em><em>, 2</em></span>, and <em>4</em>. <em>BBS1, 2, and 4</em> transcripts linked with <em>hHaCaT</em><span> cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (</span><em>m3T3-L1</em>) <em>Bbs1, 2</em> and <em>4</em><span> transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). </span><em>SiBBS4 hSH-SY5Y</em> cells exhibited early cell proliferation and differentiation (wound healing assay) rates. <em>SiBbs4 rPC-12</em> models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. <em>BBS4</em> patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology).</p><p>In conclusions, the <em>BBS4</em> gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139375767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2024-01-01DOI: 10.1016/j.diff.2023.100743
Miranda R. Krueger , Elizabeth Fishman-Williams , Sergi Simó , Alice F. Tarantal , Anna La Torre
{"title":"Expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF in the developing rhesus monkey retina","authors":"Miranda R. Krueger , Elizabeth Fishman-Williams , Sergi Simó , Alice F. Tarantal , Anna La Torre","doi":"10.1016/j.diff.2023.100743","DOIUrl":"10.1016/j.diff.2023.100743","url":null,"abstract":"<div><p>The <em>fovea centralis</em> (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme <em>CYP26A1</em> has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of <em>FGF8</em> to then direct the development of a rod-free area. Similarly, high levels of <em>CYP26A1, CDKN1A,</em> and <em>NPVF</em> expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of <em>CYP26A1, FGF8, CDKN1A</em>, and <em>NPVF</em> during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, <em>CYP26A1</em> is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468123000919/pdfft?md5=016854dcce39621407be1f001cee6238&pid=1-s2.0-S0301468123000919-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138692940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2024-01-01DOI: 10.1016/j.diff.2023.11.001
Arindam Ghosh , Anup Som
{"title":"Network analysis of transcriptomic data uncovers molecular signatures and the interplay of mRNAs, lncRNAs, and miRNAs in human embryonic stem cells","authors":"Arindam Ghosh , Anup Som","doi":"10.1016/j.diff.2023.11.001","DOIUrl":"10.1016/j.diff.2023.11.001","url":null,"abstract":"<div><p>Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210–3p and hsa-let-7b-5p which may influence pluripotency.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135764322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2023-12-16DOI: 10.1016/j.diff.2023.100744
Feirong Huang , Jiashuang Lai , Lixia Qian , Wanjin Hong , Liang-cheng Li
{"title":"Differentiation of Uc-MSCs into insulin secreting islet-like clusters by trypsin through TGF-beta signaling pathway","authors":"Feirong Huang , Jiashuang Lai , Lixia Qian , Wanjin Hong , Liang-cheng Li","doi":"10.1016/j.diff.2023.100744","DOIUrl":"10.1016/j.diff.2023.100744","url":null,"abstract":"<div><p>Differentiation of human umbilical cord mesenchymal stem cells (Uc-MSCs) into islet-like clusters which are capable of synthesizing and secreting insulin can potentially serve as donors for islet transplantation in the patient deficiency in islet β cell function both in type 1 or type 2 diabetic patients. Therefore, we developed an easy and higher efficacy approach by trypsinazing the Uc-MSCs and followed culture in differentiation medium to induce of Uc-MSCs differentiation into islet-like clusters, and the potential mechanism that in the early stage of differentiation was also investigated by using RNA-sequencing and bioinformatics. Results show that induction efficacy was reached to 98% and TGF-β signaling pathway may play critical role in the early stage differentiation, it was further confirmed that the retardant effect of differentiation progress either in cell morphology or in islet specific genes expression can be observed upon blocking the activation of TGF-β signaling pathway using specific inhibitor of LY2109761 (TβRI/II kinase inhibitor). Our current study, for the first time, development a protocol for differentiation of Uc-MSCs into islet-like clusters, and revealed the importance of TGF-β signaling pathway in the early stage of differentiation of Uc-MSCs into islet-like clusters. Our study will provide alternative approach for clinical treatment of either type I or type II diabtes mellitus with dysfunctional pancreatic islets.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138717107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2023-12-12DOI: 10.1016/j.diff.2023.100742
Zhe-Long Jin , KangHe Xu , Jonghun Kim , Hao Guo , Xuerui Yao , Yong-Nan Xu , Ying-Hua Li , DongHee Ryu , Kee-Pyo Kim , Kwonho Hong , Yong-June Kim , Lin Wang , Qilong Cao , Kyun-Hwan Kim , Nam-Hyung Kim , Dong Wook Han
{"title":"3D hepatic organoid production from human pluripotent stem cells","authors":"Zhe-Long Jin , KangHe Xu , Jonghun Kim , Hao Guo , Xuerui Yao , Yong-Nan Xu , Ying-Hua Li , DongHee Ryu , Kee-Pyo Kim , Kwonho Hong , Yong-June Kim , Lin Wang , Qilong Cao , Kyun-Hwan Kim , Nam-Hyung Kim , Dong Wook Han","doi":"10.1016/j.diff.2023.100742","DOIUrl":"10.1016/j.diff.2023.100742","url":null,"abstract":"<div><p><span>Hepatic organoids might provide a golden opportunity for realizing precision medicine in various hepatic diseases. Previously described hepatic organoid protocols from pluripotent stem cells rely on complicated multiple differentiation steps consisting of both 2D and 3D differentiation procedures. Therefore, the spontaneous formation of hepatic organoids from 2D monolayer culture is associated with a low-throughput production, which might hinder the standardization of hepatic organoid production and hamper the translation of this technology to the clinical or industrial setting. Here we describe the stepwise and fully 3D production of hepatic organoids from human pluripotent stem cells. We optimized every differentiation step by screening for optimal concentrations and timing of differentiation signals in each differentiation step. Hepatic organoids are stably expandable without losing their hepatic functionality. Moreover, upon treatment of drugs with known hepatotoxicity, we found hepatic organoids are more sensitive to drug-induced hepatotoxicity compared with 2D hepatocytes differentiated from PSCs, making them highly suitable for </span><em>in vitro</em> toxicity screening of drug candidates. The standardized fully 3D protocol described in the current study for producing functional hepatic organoids might serve as a novel platform for the industrial and clinical translation of hepatic organoid technology.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138573842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2023-11-01DOI: 10.1016/j.diff.2023.10.002
Jiangyi Wang , Xiaoyu Lin , Zongshan Shen , Guoqing Li , Lei Hu , Qiong Li , Yang Li , Jinsong Wang , Chunmei Zhang , Songlin Wang , Xiaoshan Wu
{"title":"AKT from dental epithelium to papilla promotes odontoblast differentiation","authors":"Jiangyi Wang , Xiaoyu Lin , Zongshan Shen , Guoqing Li , Lei Hu , Qiong Li , Yang Li , Jinsong Wang , Chunmei Zhang , Songlin Wang , Xiaoshan Wu","doi":"10.1016/j.diff.2023.10.002","DOIUrl":"10.1016/j.diff.2023.10.002","url":null,"abstract":"<div><p><span>Epithelial–mesenchymal interactions occur during tooth development. The dental epithelium (DE) is regarded as the signal center that regulates tooth morphology. However, the mechanism by which DE regulates the differentiation of mesenchyme-derived dental papilla (DP) into odontoblasts remains unclear. Using miniature pigs<span> as a model, we analyzed the expression profiles of the DE and DP during odontoblast differentiation using high-throughput RNA sequencing. The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the most enriched pathways in both DE and DP. The PI3K/AKT pathway was first activated in the inner enamel epithelium but not in the DP on embryonic day 50. This pathway was then activated in the odontoblast layer on embryonic day 60. We showed that AKT activation promoted odontoblast differentiation of DP cells. We further demonstrated that activation of PI3K/AKT signaling in the DE effectively increased the expression levels of AKT and dentin sialophosphoprotein in DP cells. Additionally, we found that DE cells secreted </span></span>collagen type IV alpha 6 chain (COL4A6) downstream of epithelial AKT signaling to positively regulate mesenchymal AKT levels. Therefore, our data suggest that PI3K/AKT signaling from the DE to the DP promotes odontoblast differentiation via COL4A6 secretion.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66784544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DifferentiationPub Date : 2023-09-25DOI: 10.1016/j.diff.2023.09.002
Hanna Hüneke , Marion Langeheine , Kristina Rode , Klaus Jung , Adrian Pilatz , Daniela Fietz , Sabine Kliesch , Ralph Brehm
{"title":"Effects of a Sertoli cell-specific knockout of Connexin43 on maturation and proliferation of postnatal Sertoli cells","authors":"Hanna Hüneke , Marion Langeheine , Kristina Rode , Klaus Jung , Adrian Pilatz , Daniela Fietz , Sabine Kliesch , Ralph Brehm","doi":"10.1016/j.diff.2023.09.002","DOIUrl":"10.1016/j.diff.2023.09.002","url":null,"abstract":"<div><p>Adult male Sertoli cell-specific Connexin43 knockout mice (SCCx43KO) exhibit higher Sertoli cell (SC) numbers per seminiferous tubule compared to their wild type (WT) littermates. Thus, deletion of this testicular gap junction protein seems to affect the proliferative potential and differentiation of “younger” SC. Although SC have so far mostly been characterised as postmitotic cells that cease to divide and become an adult, terminally differentiated cell population at around puberty, there is rising evidence that there exist exceptions from this for a very long time accepted paradigm. Aim of this study was to investigate postnatal SC development and to figure out underlying causes for observed higher SC numbers in adult KO mice. Therefore, the amount of SC mitotic figures was compared, resulting in slightly more and prolonged detection of SC mitotic figures in KO mice compared to WT. SC counting per tubular cross section revealed significantly different time curves, and comparing proliferation rates using Bromodesoxyuridine and Sox9 showed higher proliferation rates in 8-day old KO mice. SC proliferation was further investigated by Ki67 immunohistochemistry. SC in KO mice displayed a delayed initiation of cell-cycle-inhibitor p27<sup>Kip1</sup> synthesis and prolonged synthesis of the phosphorylated tumour suppressor pRb and proliferation marker Ki67. Thus, the higher SC numbers in adult male SCCx43KO mice may arise due to two different reasons: Firstly, in prepubertal KO mice, the proliferation rate of SC was higher. Secondly, there were differences in their ability to cease proliferation as shown by the delayed initiation of p27<sup>Kip1</sup> synthesis and the prolonged production of phosphorylated pRb and Ki67. Immunohistochemical results indicating a prolonged period of SC proliferation in SCCx43KO were confirmed by detection of proliferating SC in 17-days-old KO mice. In conclusion, deletion of the testicular gap junction protein Cx43 might prevent normal SC maturation and might even alter also the proliferation potential of adult SC.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41240581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}